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Introduction 

The modern world is built upon the principles of electronics and in many cases has direct roots to 

even the simplest circuits. Due to this, understanding the physical processes underpinning circuit 

function is an invaluable tool in developing and maintaining modern appliances and keeping their 

optimum functionality. Among these circuits Inductors, resistors and capacitors form a strong 

foundation for understanding and manipulating signals. Their use cannot be understated. 

 

Single Loop AC Circuit Analysis 

Kirchhoff’s Laws 

Kirchhoff’s junction and loop laws govern the changes in voltage and current within a circuit and are 

an incredibly useful tool in circuit analysis.  Kirchhoff’s loop law (KLL) states that changes in voltage 

around any closed path within a circuit must sum to zero (Ottoway 2018) and is represented 

mathematically as: ∑ 𝑉 = 0𝐶𝑙𝑜𝑠𝑒𝑑 𝐿𝑜𝑜𝑝  

Kirchhoff’s Junction Law (KJL) pertains to the behaviour of current and states that at any junction 

point, the sum of all currents entering the junction must equal the sum of all currents leaving the 

junction (Ottoway 2018). Again this can be expressed mathematically: ∑ 𝐼𝑖𝑛 = ∑ 𝐼𝑜𝑢𝑡 

Given a basic circuit comprising only of resistors whose opposition to current flow is without time 

dependence, both laws hold (Hyperphysics 2018) however their application to more complicated 

time variant components, such as capacitors, is of interest and provides seed for the ensuing 

investigation. 

Kirchhoff’s Loop and Junction Law analysis method 

To analyse the efficiency of application of Kirchhoff’s Loop Law to time-variant components, in 

particular capacitors, an RCR circuit was constructed (Figure 1).  
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A signal generator was used to supply an alternating current of adjustable frequency to the circuit 

with an adjustable voltage setting. Resistor one (R1) was chosen to have a resistance of 

approximately 1kΩ. To construct resistor two (R2) two resistors (R3 and R4) of resistance equivalent in 

magnitude to resistor one were utilized in parallel. A capacitor was selected with a capacitance value 

of 100nF which was verified by the colour-code labelling upon the capacitor noting that for the 

purposes of this investigation precision in capacitance value is not crucial. Exact resistance values 

were measured using an LCR meter to be: 𝑅1 = 970.0Ω ± 0.5Ω 𝑅2 = 𝑅3 + 𝑅4 = 970.0 + 970.0 = 1940.0Ω ± 0.7Ω 

Where uncertainties in resistance are taken as half the smallest increment measureable via the LCR 

meter. For derivation of uncertainty in the sum of resistances see Appendix section A:1. 

Using a variety of signal generator frequencies ranging from 10Hz up to 100kHz with single order of 

magnitude spacing, voltage drops over each component were calculated by observing the peak-to-

peak voltage given by the Oscilloscope display. Probes from the oscilloscope were connected either 

side of the signal generator to measure the voltage given by Vin, taking care the 0V probe was 

connected to ground. For resistor R2 voltage drop was measured by attaching the oscilloscope 

probes to either side of the resistor. The two resistors were then interchanged to measure the 

voltage drop over resistor R1 using the same process as that for the previous resistor. Returning the 

circuit to its original setup (Figure 1) the voltage drop was then calculated over the series component 

of R2 and the capacitor C. To find the potential difference over the capacitor the voltage differences 

over the second resistor were then deducted from these measurements. The collected results were 

then compared with that predicted by KLL theory. 

To asses KJL theory and its accuracy the currents passing through the resistors and capacitor for the 

aforementioned frequency range were calculated. This was done by utilising Ohms Law in 

impedance form and solving for current as follows: 

Figure 1: RCR Circuit Diagram 
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𝑉 = 𝐼𝑍         𝑠𝑜           𝐼 = 𝑉𝑍 

Where V represents voltage drop over the component, I the current through the component and Z 

the impedance of the component. For a resistor the impedance is simply given by its resistance.  Due 

to the time dependence in voltage and current of a capacitor, caused by its charging, the impedance 

is given by: 

𝑍𝑐 = 1𝑖𝜔𝐶 

Where the complex unit 𝑖 encapsulates the time dependence of the capacitors charging and hence 

its impedance. Here C is the capacitance of the capacitor and 𝜔 is the angular frequency of the 

current. Given the voltage drops per component for particular frequencies calculated prior Ohm’s 

Law in impedance form could then be combined with the known impedances to find the current 

through each component. These currents were then compared with that predicted by KJL theory. 

Results for Kirchhoff’s Law Analysis 

In calculating the sum of peak-to-peak voltages around the circuit for different frequencies it was 

observed KLL theory was matched for high and low frequencies as 0V sums were recorded within 

experimental error (see appendix section A:2 for tabulated data).  For mid-range frequencies 

(100Hz-10,000Hz) however, results overshot theory by an extrema of 58.3±0.2V while theory 

predicts a constant result of 0V for all frequencies. 

Comparing currents over each component it was found all currents were approximately equal and all 

were within the same order of magnitude for a given frequency range (See appendix section A:2 for 

raw data). This result matches that expected by theory as all components are connected in series 

and hence KJL stipulates all currents should be equal. 

Discussion of Results for Kirchhoff’s Law Analysis 

Discrepancy between the measured results and theoretical prediction by KLL theory is minimized for 

high (≳ 100kHz) and low (≲ 10Hz) frequencies but compounds for mid-range frequencies (10Hz – 

10,000Hz). This is due to the measured peak-to-peak voltages representing the maximum magnitude 

of the voltages over each component per cycle but not considering their respective time or phase 

offsets which are known to be shifted by 90° by theory (Ottoway 2018). For lower frequencies 

theory is more accurately matched as the impedance of the capacitor becomes increasingly large 

and hence most voltage is dropped over the capacitor, which is easily seen by considering the 

mathematics of the capacitors impedance (see Appendix section A:3). Due to this the vector sum of 

both voltages is approximately equal to the magnitude of the voltage drop over the capacitor, and so 

phase difference need not be considered for accuracy in using KLL (Hyperphysics 2018). A similar 

case holds for high frequencies as capacitor impedance tends to infinity and so almost all voltage is 

dropped over the resistor, making the vector sum of both voltage drops approximately equal to that 

over the resistor. 

KJL is observed to hold for the measured values of current throughout the circuit over all frequency 

ranges. At a given instant the current over the capacitor and resistors may be different due to the 
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charging of the capacitor affecting its impedance and hence current by Ohms law. However, the 

peak-to-peak current calculated is only respective of the maximum current experienced per cycle by 

each component and as such the time difference in currents is not considered. This results in KJL 

theory being an accurate model for the peak-to-peak currents within the circuit. 

 

High Pass Filter Analysis 

Frequency filters are a widely useful circuit which allow for the manipulation and control of electrical 

signals within AC circuits. In a fundamental form the desired filtering effect can be achieved via the 

use of a single resistor and capacitor with the filtered signal being output using voltage divider 

principles. This setup in High Pass Filter form is displayed in figure 2.  

 

Theoretical functionality can be derived taking the output voltage to be given by the voltage divider 

equation (Ottoway 2018). Applying this logic to the High Pass Filter circuit we see the transfer 

function is given by: 𝑉𝑜𝑢𝑡𝑉𝑖𝑛 = 𝑍𝑅𝑍𝐶 + 𝑍𝑅 = 𝑇𝐹 

Where 𝑍𝑅 represents the impedence of the resistor which is known to be simply its resistance R, and 𝑍𝐶  is the impedance of the capacitor which was derived prior (see Kirchhoff’s analysis). Substituting 

these values into the voltage divider equation we arrive at a theoretical model for the transfer 

function as a function of angular frequency 𝜔: 

𝑇𝐹(𝜔) = 𝑉𝑜𝑢𝑡𝑉𝑖𝑛 = 𝑅1𝑖𝜔𝐶 + 𝑅 = 𝑖𝜔𝐶𝑅1 + 𝑖𝜔𝐶𝑅 

Where C is the capacitance of the capacitor and R the resistance of the resistor. The effect of a DC 

offset in the applied voltage and its effect on circuit functionality is also of interest for this circuit. 

Figure 2: High Pass Filter 

Circuit Diagram 
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The extent to which the derived theoretical model represents reality and the physical principles 

underpinning any inaccuracy provide a basis for investigation.  

High Pass Filter Analysis Method 

A High Pass Filter Circuit is constructed for investigation (Figure 2) utilising a capacitor with 

capacitance of 980.4nF and resistor with resistance of 977.4Ω. Oscilloscope probes are attached to 

either side of the resistor component to function as the output voltage, taking care the 0V probe is 

connected to ground. Values of input voltage, given by the signal generator display, are then 

measured against output voltage for a variety of AC frequencies set by the signal generator. Due to 

the logarithmic nature of the frequency-voltage relationship frequencies were selected with a 

logarithmic scale in mind at values of 1 and 3 for every order of magnitude ranging from 10Hz to 

100kHz. Phase difference between output and input voltage was measured by analysing the time 

difference between characteristic waveform points on the signal generator for the above mentioned 

frequencies. To minimise uncertainty in recorded time values the points of maximum gradient on 

the waveform were selected for time delay measurement. Observed values were then compared 

with that expected by theory via the MATLAB analytical software to give insight into any mismatch 

between theory and experiment.  

A DC offset voltage of 1V was then added to Vin by setting the DC offset setting on the signal 

generator to be at the 1V marking. The resulting shift in output voltages was observed for the 

aforementioned frequencies to give insight into the effect of the DC offset. 

Results for High Pass Filter Analysis 

Low frequencies of 10Hz resulted in a TF value of approximately 0.06 with a gradual increase in 

amplitude from frequencies of 10Hz up to 3kHz. Following this a plateau in amplitude of 10.5V ± 

0.2V was reached for frequencies thereafter (see Appendix section B:1) which exactly matches input 

voltage within experimental error and suggests a TF value of 1.  These results matched that expected 

by the theoretical TF derived previously for both high and low frequency ranges since: 

lim𝜔→∞ 𝑇𝐹(𝜔) = lim𝜔→∞ 𝑖𝜔𝐶𝑅1 + 𝑖𝜔𝐶𝑅 = 1        𝑎𝑛𝑑        lim𝜔→0 𝑇𝐹(𝜔) =  lim𝜔→0 𝑖𝜔𝐶𝑅1 + 𝑖𝜔𝐶𝑅 = 0         
Where low frequencies are represented by 𝜔 tending to 0 and high frequencies by 𝜔 tending to 

infinity. These results were further clarified by MATLAB graphs displaying the experimental 

measurements overlaid with theoretical curves (Figure 3). 
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Phase offset is observed to be maximised (25ms ± 1ms) for lower frequencies of 10Hz with a 

continual decline to a minimum offset (0.00ms ± 0.01ms) at the 100kHz mark (these results are 

tabulated in detail in Appendix section B:1). This relationship is expressed explicitly in the 

constructed MATLAB plots (Figure 4).  

 

DC offset produces no shift in the recorded output voltages despite having a constant offset 

represented on the signal generator display. This pattern was observed to hold and produced the 

same trend as seen previously with a constant offset included for measurements of Vout. 

 

Discussion of Results for High Pass Filter Analysis  

At low frequencies the transfer function approaches zero and continues to climb as frequency 

increases until a constant value of approximately 1 is reached around the 1.5kHz mark. This can be 

linked physically to the build-up of charge on the capacitors plates. For significantly low frequencies 

the applied AC current begins to replicate a DC current. In this regime sufficient time elapses such 

that the charge held on the capacitor impairs current flow and the capacitor begins to function as an 

open circuit. Due to this the majority of applied voltage is dropped over the capacitor reducing the 

voltage dropped over the resistor and hence minimising the transfer function (seen mathematically 

in Appendix section A:3).  

As frequencies climb the reverse process occurs as the fast alternating current prevents significant 

charge build up within the capacitor and hence the opposition to current flow provided by the 

Figure 3 

Figure 4 
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capacitor is minimal. In turn little voltage is dissipated over the capacitor leaving almost all voltage 

dropped over the resistor leading to a maximised transfer function of 1. 

The charging of the capacitor also acts to impose the observed phase shift between the input and 

output voltage. As the input voltage is maximised the rate of capacitor charging is maximised and 

the capacitor continues to charge for some time until it reaches maximum charge. Due to this time 

delay caused by the build-up of charge on the capacitor there is a corresponding phase offset 

between the amplitude of the input voltage and that measured at the output. As frequencies 

become increasingly large however significant time is not able to elapse for charge to accumulate on 

the capacitor, causing it to act as an open circuit and hence the phase offset between input and 

output voltage is minimised as a result. 

A DC current is analogous to an AC current with a frequency of 0 meaning it does not repeat for all 

time. Adding a DC offset to the AC voltage then only acts to charge the capacitor by the amount of 

the offset, in this case 1V. As this additional voltage is not able to progress past the capacitor in the 

High Pass circuit once charged it has no effect on the output voltage, despite increasing the input 

voltage, as was observed experimentally. 

 

Band Pass Filter Analysis 

A useful circuit in the control and filtering of electrical current is the Band Pass Filter which utilises 

an inductor and capacitor in parallel to siphon out all but a specific range of frequencies. Theoretical 

understanding of such a circuits behaviour can be captured via the use of a transfer function which 

gives the relationship between the outputted filtered voltage and the input voltage. Again using 

voltage divider theory the transfer function for a Band Pass Filter can be shown to be: 

𝑇𝐹(𝜔) = 11 + 𝑖𝑅 (𝜔𝐶 − 1𝜔𝐿) 

Where 𝜔 is the angular frequency of the current, R the resistors resistance, L the inductance of the 

inductor and C the capacitance of the capacitor (see appendix section C:1 for a full derivation). From 

this expression it can be observed there are 3 frequencies of interest. As frequencies tend to infinity 

and zero we observe the Transfer Function tending to zero: 

lim𝜔→0 11 + 𝑖𝑅 (𝜔𝐶 − 1𝜔𝐿) = lim𝜔→∞ 11 + 𝑖𝑅 (𝜔𝐶 − 1𝜔𝐿) = 0 

It can also be seen that for: 

𝜔 = √ 1𝐿𝐶 

The transfer function reaches its maximum value of 1 (See Appendix section C:2 for a proof). This 

frequency is known as the characteristic frequency of the circuit. The extent to which these 
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theoretical predictions accurately represent the real world is of interest and gives insight into any 

corrections to theory that may be needed to better represent reality. 

Band pass Filter Method 

To analyse circuit behaviour a band pass filter was constructed with the form displayed in figure 5. 

 

A resistor of value 974.6±0.05Ω, a capacitor with capacitance 1.048±0.0005µF and inductor with 

inductance of approximately 100µH were utilised in the circuit (Inductance is here given 

approximately as the original inductance value was recorded as 732±0.5µH but upon analysis of 

results was observed to actually be approximately 100µH). All values were measured via an LCR 

meter. Oscilloscope probes were then connected to either side of the parallel circuit component to 

provide a measure of Vout, taking care the 0V probe was connected to ground. Measurements of Vout 

were then taken and compared with measurements of Vin (given by the signal generator display) for 

frequencies ranging from 10Hz up to 100kKz. Values of 3, 5 and 10 were selected per order of 

magnitude of frequency with additional values chosen around the characteristic frequency fc given 

by: 

𝜔𝑐 = √ 1𝐿𝐶 = √ 1(100 × 10−6)(1.048 × 10−6) = 97.68 × 103𝑠−1 

𝑆𝑜:     𝑓𝑐 = 𝜔𝑐2𝜋 = 97.68 × 1032𝜋 = 15.55𝑘𝐻𝑧 

 

This frequency allowed for circuit filter behaviour to be optimally captured. 

The resistor was then replaced to have a resistance value of approximately 500Ω and the above 

mentioned process was repeated to determine the transfer function across a wide (10Hz up to 

100kHz) frequency range. Experimental values were then graphically overlaid with the theoretical 

curve using the MATLAB analytical software to give insight into any discrepancies between the two. 

Figure 5: Band Pass Filter 

Circuit Diagram 



9 

 

Results for Band Pass Filter Analysis 

Transfer Function was minimised for both high and low frequencies but peaked around the 

characteristic frequency range, as is tabulated in the recorded data (see Appendix section C:1). 

When overlaid with the theoretical curve this relationship is further evident as seen by the produced 

graph (Figure 6).  

 

Upon interchanging the resistor with a resistor of resistance 500Ω a similar pattern is observed with 

high and low frequencies giving a minimum transfer function and frequencies close to the 

characteristic frequency giving maximum TF of approximately 1. This can be seen from the tabulated 

data (Appendix section C:1) and the graph constructed using the MATLAB analytical software (Figure 

7).  

 

In both cases an interesting mismatch between theory and experiment is observed as frequencies 

tend toward zero. By adding a constant offset in the value of the inductor of 1.54 this plateau was 

corrected. The results then produced the graph displayed in figure 8. 

Mathematically the transfer function is then observed to be of the form:  

𝑇𝐹(𝜔) = 𝑖𝜔𝐿 + 𝑄𝑖𝜔𝐿 + 𝑄 + 𝑅(−𝜔2𝐶𝐿 + 𝑖𝜔𝐶𝑄 + 1) 

Figure 6 

Figure 7 
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Where Q represents the constant offset for inductance (See appendix section C:3 for a full 

derivation). 

 

Discussion of Results for Band Pass Filter Analysis 

Comparing theory and experiment correlation was observed for frequencies above the 1.5kHz mark 

for circuits with both resistors of 500Ω and 974.6Ω. Here a peak at the characteristic frequency of 

15.55kHz was seen giving a TF value of 1 followed by a gradual decrease thereafter for frequencies 

up to 100kHz. Below this frequency range discrepancies compound as theory suggests a tail towards 

a TF of zero whereas experiment had a TF plateau at just above the 10
-3

 amplitude mark. This 

difference was due to the inductor being non-ideal and contributing an internal resistance which 

acted to impair current flow and prevent the 0 amplitude mark being reached. Noting that this 

altercation was caused by resistance within the inductor the theoretical transfer function can then 

be edited to reflect this now using RL as the resistance of the inductor: 

𝑇𝐹(𝜔) = 𝑖𝜔𝐿 + 𝑅𝐿𝑖𝜔𝐿 + 𝑅𝐿 + 𝑅(−𝜔2𝐶𝐿 + 𝑖𝜔𝐶𝑅𝐿 + 1) 

 

Transient Response of a Band Pass Filter 

The response of circuits to sudden step changes in voltage is another circuit trait of interest which 

provides insight into the physical inner workings of circuit components. As such its investigation is 

useful to understanding the physics and functionality of particular circuits. The specific case of a 

band pass filter will be analysed here to provide further insight into how such filters operate and 

gain a better understanding of the principles governing them. 

Transient Response of a Band Pass Filter Method 

A band pass filter, seen in figure 5, was constructed for further analysis. An inductor with inductance 

101.9µH (±0.1µH), capacitor with capacitance 95.8nF (±0.1nF) and resistor with resistance 978Ω 
(±0.5 Ω) were utilized. In the analysis of the Band Pass Filter the filtering nature of the circuit is most 

Figure 8 
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prominent at the characteristic frequency (Ottoway 2018). For the constructed circuit this was given 

by: 

𝜔𝑐 = √ 1𝐿𝐶 = √ 1(101.9 × 10−6)(0.958 × 10−6) = 101.212 × 103𝑠−1 

𝑆𝑜:     𝑓𝑐 = 𝜔𝑐2𝜋 = 101.212 × 103𝑠−12𝜋 = 16.11𝑘𝐻𝑧 

To ensure the transient nature of the circuit is captured a circuit frequency significantly lower than 

the characteristic frequency (5 kHz) was chosen to enable the behaviour to be easily observable 

within one current cycle. 

Oscilloscope probes were then attached either side of the parallel circuit component to measure Vout 

as in the original analysis of  the band pass filter again taking care the 0V probe was connected to 

ground. Input voltage frequency was set to 5kHz via the signal generator settings and the circuit 

response given by the oscilloscope display was observed and plotted. 

Transient Response Results 

Oscilloscope display matches that expected for an exponentially damped oscillatory system and is 

shown in figure 9. This represents one cycle of behaviour, after which the same behaviour is 

observed in reverse, with amplitude first decreasing to a minima and then exponentially decaying 

whilst oscillating around the zero point. 

 

 

 

 

 

Figure 9: Oscilloscope Display 

for Transient Response of Band 

Pass Filter 
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Five maxima are reached in the transfer function amplitude before the signal completely decays and 

then repeats. The total time for one cycle is observed to be 100µs. 

Transient Response Discussion 

Transient response analysis reveals a second order ODE with exponentially damped sine and cosine 

solutions for the voltage of the output which matches the response seen in the oscilloscope display. 

As time progresses within one cycle the applied current acts as a DC source. Due to this the capacitor 

becomes fully charged, acting then as an open circuit while the original resistance of the inductor is 

overcome as a B field is constructed within its coils and the inductor functions as a short circuit. This 

behaviour is quantified by analysing the impedance formulas for each component as time tends to 

infinity (see Appendix sections A:3 and D:1). 

Altering the direction of current flow at the end of each cycle causes the charge stored within the 

capacitor to be dissipated back toward the signal generator with the inductor acting as an open 

circuit due to the B field held within its coils providing a strong opposition to current flow. This 

behaviour of both components is further quantified by considering the effective resistance for short 

time scales (see Appendix sections A:3 and D:1). 

Once the capacitor has discharged the inductor can then promote current flow in the opposite 

direction, hence the decrease in the waveform seen in figure 9, by virtue of the B field retained 

within its coils from the previous cycle. This current flow causes charge to once again build up on the 

capacitor which can then be dissipated causing the amplitude to flip once more. This process 

continues until the B field stored within the inductor is fully dissipated or the signal generator 

voltage inverts, restarting the cycle 

Observing the transfer function of the circuit derived in the previous section we note that output 

voltage is maximised for the characteristic frequency of 𝜔 = (𝐿𝐶)−1/2 while divergence from this 

value causes a decrease in the outputted voltage over the LC parallel component. 

Physically, the frequency dependant terms in the transfer function correspond to the build-up of 

charge on the capacitor and the storage of energy in the B field within the inductor. 

 

Conclusion 

Through the analysis of inductors, capacitors and resistors within multiple circuits it was seen 

current could be manipulated to exclude all but high frequencies and also allow a narrow bandwidth 

of frequencies within a specific range. This behaviour was found to be caused by the build-up of 

charge within the capacitor components and the storage of energy within the B fields setup within 

the inductor. Understanding of the physical principles underpinning the behaviour of components 

within these circuits provides the ability to better manipulate their functionality and correct any sub-

optimal characteristics. As a result this knowledge is of much practical significance. 
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Appendix 

Section A 

1: Derivation of Uncertainty Sum 

Given the general formula for uncertainty calculations (Norton 2010) uncertainties can be found 

thus: 𝜎𝑅2 2 = 𝜎𝑅3 2 + 𝜎𝑅42 𝜎𝑅2 = √0.52 + 0.52 = 0.7 

2: Tableted Data for Analysis of Kirchhoff’s Laws 
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3: Proof of Capacitor Voltage Response to Extreme Frequency Ranges 

lim𝜔⟶0 𝑍𝑐 = lim𝜔⟶0 1𝑖𝜔𝐶 → ∞    𝑠𝑜    𝑉𝑐 = 0 



15 

 

lim𝜔⟶∞ 𝑍𝑐 = lim𝜔⟶∞ 1𝑖𝜔𝐶 = 0   𝑠𝑜    𝑉𝑐 ⟶ ∞ 

Section B 

1: Tableted Data for Analysis of High Pass Filter 

 

Section C 

1: Transfer Function Derivation for Band Pass Filter 

Voltage divider theory gives: 

𝑇𝐹(𝜔) = 𝑍𝐶||𝐿𝑍𝐶||𝐿 + 𝑍𝑅 

Where parallel component impedance (represented by ZC||L) is given by the parallel resistance sum 

law: 

𝑍𝐶||𝐿 = ( 1𝑍𝐶 + 1𝑍𝐿)−1 = ( 1(𝑖𝜔𝐶)−1 + 1𝑖𝜔𝐿)−1
 

𝑍𝐶||𝐿 = (𝑖𝜔𝐶 + 1𝑖𝜔𝐿)−1 = 1𝑖𝜔𝐶 + 1𝑖𝜔𝐿 

𝑠𝑜   𝑍𝐶||𝐿 =   𝑖𝜔𝐿1 − 𝜔2𝐿𝐶 

Transfer Function is then: 

𝑇𝐹(𝜔) = 𝑖𝜔𝐿1 − 𝜔2𝐿𝐶𝑖𝜔𝐿1 − 𝜔2𝐿𝐶 + 𝑅 = 11 + 𝑅 − 𝜔2𝑅𝐿𝐶𝑖𝜔𝐿 = 11 + 𝑖𝑅 (𝜔𝐶 − 1𝜔𝐿) 
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2: Proof of Characteristic Frequency for Band Pass Filter 

Given the characteristic frequency: 

𝜔 = √ 1𝐿𝐶 

Transfer Function then becomes: 

𝑇𝐹(𝜔) = 11 + 𝑅 − 𝜔2𝑅𝐿𝐶𝑖𝜔𝐿 = 11 + 𝑅 − (𝐿𝐶)−1𝑅𝐿𝐶𝑖(𝐿𝐶)−1/2𝐿 = 11 + 𝑅 − 𝑅𝑖(𝐿𝐶)−1/2𝐿 = 11 + 0 

Therefore: 𝑇𝐹 = 1 

3: Derivation of Adapted Transfer Function Incorporating Inductor Resistance 

Transfer function given by voltage divider to be: 

𝑇𝐹(𝜔) = 𝑍𝐶𝐿𝑅𝑍𝐶𝐿𝑅 + 𝑍𝑅 

Where parallel component resistance is: 

𝑍𝐶𝐿𝑅 = ( 1𝑍𝐶 + 1𝑍𝐿𝑅)−1
 

𝑍𝐶𝐿𝑅 = (𝑖𝜔𝐶 + 1𝑖𝜔𝐿 + 𝑅𝐿)−1 = 𝑖𝜔𝐿 + 𝑅𝐿−𝜔2𝐶𝐿 + 𝑖𝜔𝐶𝑅𝐿 + 1 

So: 

𝑇𝐹(𝜔) = 𝑖𝜔𝐿 + 𝑅𝐿−𝜔2𝐶𝐿 + 𝑖𝜔𝐶𝑅𝐿 + 1𝑖𝜔𝐿 + 𝑅𝐿−𝜔2𝐶𝐿 + 𝑖𝜔𝐶𝑅𝐿 + 1 + 𝑅 = 11 + 𝑅 −𝜔2𝐶𝐿 + 𝑖𝜔𝐶𝑅𝐿 + 1𝑖𝜔𝐿 + 𝑅𝐿  

= 𝑖𝜔𝐿 + 𝑅𝐿𝑖𝜔𝐿 + 𝑅𝐿 + 𝑅(−𝜔2𝐶𝐿 + 𝑖𝜔𝐶𝑅𝐿 + 1) 

  



17 

 

4: Tabulated Data for Analysis of Band Pass Filter 

 

Section D 

1: Proof of Inductor Voltage Response to Extreme Frequency Ranges lim𝜔⟶0 𝑍𝐿 = lim𝜔⟶0 𝑖𝜔𝐿 = 0    𝑠𝑜    𝑉𝐿 ⟶ ∞ lim𝜔⟶∞ 𝑍𝐿 = lim𝜔⟶∞ 𝑖𝜔𝐿 → ∞   𝑠𝑜    𝑉𝐿 = 0 

 


