
Data Analysis and Modelling

—–

A Practical Guide to Wavelet Analysis and Noise

Techniques

Joseph Pritchard - Adelaide University

April 11, 2023

Introduction

The Wavelet Transform (WT) process is showcased, in detail, through applica-
tion of several wavelet functions (Mexican Hat, Morlet, Gaussian) on a given
data set. A WT is performed on an associated white noise time-signal and used
as a statistical confidence benchmark.

Determination of Sample Rate Given Driving Data
Signal

Note the following technique is designed requiring the input signal be a single
frequency signal over the data points provided. It is however sufficient every
successive data point equal in magnitude to the first in the set label a half period.

MATLAB software records the magnitude of the first data point in the input
file. Data is then scanned for succesive data points of the same magnitude and
used to label the periodicity of the data. A desired number of cycles to average
over may be specified by the user. In the given sample it is found 16 cycles
provides sufficient accuracy to exactly determine the frequency composition of
the 145Hz driving signal [2]. The calculated sample rate is 4.4116× 104Hz.

1

Wavelet Transform Method

A wavelet function is selected for analysis. The scale values s adjust the width
of the wavelet function and as such provide a means of detecting signal fre-
quency. Widths similar in dimension to signal frequency peak width will have
high overlap, whilst those far from this value will have minimal overlap. Time
offset is determined by the time span of the original signal and is controlled by
the parameter t0. This relation can be expressed as

ψ(t) = ψ

(
t− t0
s

)
where ψ(t) represents the time space representation of our chosen wavelet func-
tion.

Due to the finite nature of the data sets analyzed by the WT there is a limit
on the clarity of signal in the resulting plot. Erroneous signals arrising from
this process may be discounted by introducing a cone of influence marker[1].
Throughout, this cone is represeneted as a solid red line on the WT plots. The
functional form of the cone is dependent on the chosen wavelet function [3].

Increased Reliability

Due to their localized nature [1], WT performance can be improved by either
decreasing the sampling frequency or decreasing the total time duration of the
input signal. In our analysis both methods are utilized, reducing sampling
frequency by a factor of 4 to 1.1029 × 104Hz and limiting the number of time
data points at 213. Restricting time data size to a power of 2 protects against
zero padding errors inherent in the MATLAB fft function.

Noise Generation

Inbuilt MATLAB functionality is used to generate a noise signal. For every
data point in the original signal a pseudo-random number is generated between
0 and 1, then multiplied by the standard deviation of the original time signal.
The WT is then taken as described above. By virtue of the uniform distribution
of the applied MATLAB pseudo-random number generator, the generated noise
is white in nature.

2

Results

Mexican Hat Wavelet

The following is the resulting WT utilizing a Mexican Hat wavelet function
[1][Figure 1]. For comparison, observe the Fourier Transform (FT) frequency
space plot of the output signal shown in figure 2. Observe the periodic peak
features within the WT throughout the time domain occuring at a frequency
of approximately 50Hz. Corresponding peaks can be seen in the FT plot at
around 38Hz and 70Hz. In conjunction with the FT plot provided we observe
the WT exhibits a smoothing property across the underlying dominant frequen-
cies, visible in the delocalized nature of the 50Hz WT frequency peak.

Due to the time-localized nature of the mexican hat wavelet, we expect time
domain peaks to be clearly visible in the WT plot. This is evidenced in the
time-periodic nature of the frequency peaks in the WT, which can be linked to
peaks present in the output data signal.

Figure 1:
Time variant frequency peak at 50Hz with frequency delocalization. Low

frequency signal later attributed to noise - see noise filtering.

3

10
0

10
1

10
2

10
3

F(Hz)

10
-4

10
-2

10
0

10
2

P
o

w
e

r

FFT

Average : None

Window : None

Truncate : true, Partition Number : 1

Figure 2:
Fourier Transform of the truncated input data signal. Averaging and

windowing are not performed. Note peaks at approximately 38Hz, 75Hz,
103Hz and higher orders.

Noise Filter

Applying the same wavelet transformation process to a white noise time sig-
nal yields the WT in figure 3. By comparing the WT output data values with
their corresponding noise value, we are able to remove data values statiscially
insignificant with respect to randomly generated white noise. Thus is done by
direct comparison and setting insignificant values to be approximately zero. The
resulting plot can be seen in figure 3.

Note that the method of pseudo-random number generation provides a ran-
dom baseline of noise which, given a different seed, results in an alternate noise
WT and thus different filtered output WT. This should be considered when
inferring significance of WT points close to high noise regions.

4

Figure 3:
Wavelet Transformed white noise - note the dominance at low frequencies.

Figure 4:
WT with noise filter applied. Note the time variant frequency peak close to

50Hz with frequency delocalization.

5

Morlet Wavelet

Redefining the wavelet function as the Morlet Wavelet function [1] the analysis
yields the WT in figure 5.

Figure 5:
Morlet Transformed output signal with noise filter. Note prominent

time-invariance of the frequency peak at approximately 67Hz.

Contrary to the Mexican Hat Wavelet case we observe a frequency peak consis-
tent throughout the time domain. This occurs at a value close to 67Hz. The
Morlet wavelet function features a damped time oscillation of the form

eiωte−bt2

Due to the presence of the highly oscillatory eiwt term, we expect high overlap
with a time oscillating test signal, and thus increased clarity in the WT fre-
quency domain. This is in contrast to the Mexican Hat case[1] where, due to
the time localized nature of the wavelet function, frequency peaks are not as
sharply defined.

At the expense of increased frequency resolution we witness a decrease in time-
domain clarity. Notable by the constant nature of the signal across all time
values, again contrasting the Mexican Hat case.

6

Gaussian Wavelet

Analysis using a Gaussian Wavelet function yields the WT observed in figure
6. Here we witness a reduction in frequency peak amplitude in exchange for
increased time resolution. Analogous to the Mexican Hat being less oscillatory
than the Morlet Wavelet, we again have a reduction in wavelet function time-
oscillation. The pure Gaussian function features a single localized peak in the
time domain. Peaks in the test signal are picked out with greater clarity, leading
to increased spacing between features along the 44Hz frequency line. Oscillatory
behavior is not as clearly resolved, leading to the reduced ampitude of frequency
peaks in comparison to the Mexicna Hat and Morlet cases.

Figure 6:
Gaussian WT of output signal with noise filter. Note the high time resolution

of frequency space peaks situated around 44Hz and corresponding low
amplitude.

7

Conclusion

Detection of time and frequency localization of a test signal are displayed with
clarity by the WT process. Through analysis of three wavelets, tradeoff between
frequency-space and time-space resolution is linked to time-oscillation within the
chosen wavelet function. Increased oscillation leads to a greater frequency res-
olution at the expense of time resolution.

Noise filtering provides a method of statistical significance testing and may be
used to disgard features lying below that expected from random generation of a
chosen noise color. Cone of Influence comparison further allows for the removal
of erroneous results inherent in the WT process.

8

References

[1] Rowell, G 2020, Data Analysis and Modelling Course Notes, Data Analysis
and Modelling, University of Adelaide

[2] Rowell, G 2020, Data Analysis and Modelling Assignment 3 Guidelines, Data
Analysis and Modelling, University of Adelaide

[3] C. Torrence, G. Compo, 1998, A Practical Guide to Wavelet Analysis, Pro-
gram in Atmospheric and Oceanic Sciences, University of Colorado, Boulder,
Colorado
[4] Pritchard, J 2020, A Practical Guide to Fourier Data Techniques, Data Anal-
ysis and Modelling Assignment Submission, University of Adelaide, Adelaide,
Australia

9

Appendix

Following is the MATLAB software used in the generation of all plots included
in this report. FT generation code is included as a reference[4].

10

Table of Contents
 .. 1
USER SETTINGS ... 1
SOFTWARE ANALYSIS ... 2
DEPENDENCIES ... 3

clear all;
close all;

USER SETTINGS
%Suppress figure rendering
set(0,'DefaultFigureVisible','off')

%Import data
data = importdata('BBChaos_145.txt');
y = data(:,2);

%Set f_s
input_Hz = 145;
input_period = 1/(input_Hz);
fsamp = Calculate_sample_rate(data(:,1), input_period, 16);

%Set decimation factor
d = 4;

%Define Wavelets

%Mexican Hat
MH.Func = @(t, t0, s) (1 - ((t-t0)./s).^2).*exp(-0.5*((t-t0)./s).^2);
MH.Norm = @(s, Y) (2*pi*s)*Y;
MH.S_to_f = @(fs, s) (fs) .* ((2*pi / sqrt(2.5)) .* s).^(-1);
MH.name = "Mexican-Hat";
MH.coi = @(scale) sqrt(2)*scale;

%Gaussin Wavelet
GW.Func = @(t, t0, s) pi^(-0.5) * exp(-0.5*((t-t0)./s).^2);
GW.Norm = @(s, Y) (2*pi*s)*Y;
GW.S_to_f = @(fs, s) (fs) .* ((2*pi / sqrt(0.5)) .* s).^(-1);
GW.name = "Gaussian";
GW.coi = @(scale) sqrt(2)*scale;

%Morlet Wavelet - w0 must satisfy admissability critereon
w0 = 6;
C = (1 + exp(-w0^2) - 2*exp((-3/4)*w0^2))^(-1/2);
MW.Func = @(t, t0, s) C *(1/(pi^0.25)) .* exp(1i*w0.* ((t-t0)./s)) .*
 exp(- ((t-t0)./s).^2 / 2);
MW.Norm = @(s, Y) (2*pi*s)*Y;
MW.S_to_f = @(fs, s) (fs) .* ((4*pi / (w0 + sqrt(2 + w0^2))) .*
 s).^(-1);

1

MW.name = "Morlet";
MW.coi = @(scale) sqrt(2)*scale;

%Paul Wavelet
PW.Func = @(t, t0, s) ((-8)/(sqrt(pi*24))) .* (1 - 1i* ((t-t0)./
s)).^3;
PW.Norm = @(s, Y) (2*pi*s)*Y;
PW.S_to_f = @(fs, s) (fs) .* ((4*pi/5) .* s).^(-1);
PW.name = "Paul";
PW.coi = @(scale) scale*sqrt(2);

%Set Wavelet Function
WF = GW;

%Choose if noise filter applied
filter = true;

SOFTWARE ANALYSIS
%Decimate and truncate data
%Improves quality of WT
%WT is best for short time data sets
y = y(1:d:2^13);

fSamp = fsamp/d;

Pyy = (abs(fft(y))).^2;
Y = fft(y);
stop = length(Pyy);

%Set time axis
t = 1:stop;
t0 = stop/2;

%Set scale array as log base 10
%Max at 2.5 for MW and MH
x = -1:0.1:2.5;
scale = 10.^x;

%Perform Transform
WT = W_T(scale, t, t0, Y, stop, WF);

%Apply a Noise Filter if filter==true
if(filter)
 r = std(y)*randn(1,length(y));
 R = fft(r);
 WTN = W_T(scale, t, t0, R', stop, WF);
 %Set signal above noise to be zero
 WT = Filter(WT, WTN, scale, stop);
end

%Plot
Plot_WT(t, x, scale, WT, fSamp, WF, filter);

2

DEPENDENCIES
function Plot_WT(t, x, scale, WT, fSamp, WF, filter)
%Plot a Wavelet data set WT

 FIG = figure;

 %Final integer specifies the number of contours to render
 contourf(t, x, abs(WT),20);
 axis ij;
 hold on;

 %Define and plot Cone of Influence
 coi = WF.coi(scale);
 t0 = t(1:length(coi));
 plot(scale,log10(coi),'r');
 plot(max(t) - scale, log10(coi), 'r');

 %Set labels and axis format
 xlabel('delay (units of sample interval)')
 ylabel('log10(scale)')
 axis([0 2000 1 2.5])
 yyaxis right

 u = 1: 1.5/10 : 2.5;
 scale = 10 .^ u;
 x = WF.S_to_f(fSamp, scale);
 yticklabels(x);
 ylabel('Frequency');
 axis ij;

 title({WF.name + ' Wavelet', "Noise Filter: " + filter});

 %hold off

 %Save result
 saveas(FIG, WF.name + filter, 'epsc');
end

function result = W_T(scale, t, t0, Y, stop, WF)
%Produce the WT of Y using Wavelet Function WF
 WT = zeros(length(scale),stop);

 for ii = 1:length(scale)
 %Pick out scale scalar value
 s = scale(ii);

 %Set wavelet function
 w = WF.Func(t, t0, s);

 %Swap 1st and 2nd half of wavelet function in prep. for ifft
 %Only select 1:stop # of points
 w = [w(stop/2:stop) w(1:(stop/2-1))];

3

 %Normalize wavelet function wrt s
 W = WF.Norm(s, fft(w));

 %Calculate time domain for current scale value
 WT(ii,:) = ifft(conj(W').*Y);
 end
 result = WT;
end

function result = Filter(WT, WTN, scale, stop)
%Set all WT value below WTN to ~zero
 for ii = 1:length(scale)
 for jj = 1:stop
 if abs(WT(ii,jj)) < abs(WTN(ii,jj))
 WT(ii,jj) = eps;
 end
 end
 end
 result = WT;
end

Published with MATLAB® R2018b

4

