
Data Analysis and Modelling

Exam

———————–

Evidence for Lunar Cycles in Ocean Patterns

Joseph Pritchard - Adelaide University

June 5, 2020

Introduction

Evidence for cyclic behavior in ocean state on the scale of the siderial (27.3 days)
and synodic (29.5 days) lunar orbital periods is searched for in sea level, water
temperature, air temperature, barometric pressure, wind direction, wind gust
and wind speed. Data is sourced from annual ocean measurements provided
by the Australian Bureau of Meteorology (BOM) for the years spanning (2000-
2002). A Wavelet Transform (WT) is used for analysis (Gaussian, Mexixan
Hat, Morlet) and a random white noise filter applied as a test for statistical
significance.

Wavelet Analysis Method

A function (Wavelet) with time and frequency localised features is selected and
the overlap computed at every time point of our data. Mathematically this is
given by

ψ(t) = ψ

(
t− t0
s

)
where ψ is our chosen Wavelet, t the current comparison time, t0 the time lo-
calisation of our Wavelet and s the scale factor. s is proportional to frequency
and may be converted using the appropriate formula for the chosen Wavelet [2].

By this approach we are thus able to distinguish the periodicities present in
our data and correspondingly the time at which they occur. Time localisation
provides an advantage compared with traditional Fourier processes [1]. Time
vs frequency clarity is a tradeoff attributable to the chosen wavelet - oscillatory
wavelets (Morlet) provide greater frequency resolution at the expense of time

2

clarity when compared to time localised Wavelets (Gaussian) [2].

In search for oscillatory behaviour on the scale of 27.3 days we choose a Morlet
Wavelet for analysis to provide strong frequency resolution. All analysis is car-
ried out with use of MATLAB software, the script for which may be viewed in
the appendix.

Statistical Significance

A random noise time signal is generated by allocating a random number selected
from a uniform distribution to every time point. The signal is then scaled by
the standard deviation of our data up to a sigma level of our choosing. Noise is
Wavelet Transformed and all WT ocean data below the corresponding noise level
is set to zero, leaving only data above the specified significance level. Through
virtue of the uniform distribution sampled, the noise is white in nature.

In testing it is found a sigma level of 2 standard deviations provides rejec-
tion strong enough to obscure background features whilst preserving the clarity
of features of interest.

Data Drop-outs

Throughout the supplied data there exist periods of erroneous measurement
where values of -9999.0 are recorded for several variables. To overcome this
clear error, these values are set to zero and wavelet analysis conducted as nor-
mal. It should be noted this data fault provides limitations on the clarity of the
resulting transformation plots, especially in the case of air temperature where
from late 2000 through late 2002 this feature is present. To limit these negative
effects, WT is performed for a time duration of 100 days beggining at the start
of 2000, to limit the inclusion of such points.

It is suspected this error in measurement is attributable to measurement de-
vice failure and maintenance periods.

Results

Mixed Lunar Cycle Behaviour

Periodicity at roughly 28 days is observed in WTs of wind direction, water
temperature, air temperature, pressure and sea level. This value lies halfway
between the siderial (27.3) and synodic (29.5) lunar periods. This behavior sits
above the 2σ level of random noise giving us confidence in its presence (Figure
1 (a)-(e)).

3

Mixed Lunar Cycle Behavior

(a) Wind Direction (b) Water Temperature

(c) Air Temperature (d) Pressure

(c) Sea Level

Figure 2
Upper and lower dashed lines mark siderial and synodic periodicities
respectively. All data sits above the 2σ level. Contours are linear in

magnitude.

4

Synodic Behaviour

Observe in the displayed results (Figure 2 (a)-(b)) the intersection of the lower
dashed line (marking synodic period) with the central point of the contour
peaks. This is consistent across the displayed peaks, all of which sit above the
2σ level giving us confidence in the validity of the link to the synodic cycle.

Synodic Behavior

(a) Wind Speed (b) Wind Gust

Figure 2
Upper and lower dashed lines mark siderial and synodic periodicities
respectively. All data sits above the 2σ level. Contours are linear in

magnitude.

Discussion

The effectiveness of the wavelet technique is highly dependent on the size of
data sampled. Sampling for large periods of time - specifically greater than 100
days - causes amplification in the detection of high period peaks, to the extent
that lunar orbital periods become obscured. This is showcased by sampling for
periods of 150 and 200 days (Figure 3 (a)-(b)).

This restriction in maximum sample duration provides limitations in deter-
mining the temporal duration of period signals present within the data. This
drawback is remedied by performing WT on subsequent year data (2001, 2002),
which show the same periodicities present with over 2σ accuracy (Appendix
Item 1)).

Choice of period sampling range (set by scale factor s) provide the possibility
of drowning the desired observations, again as higher period behaviours cause
the relative size of lower period peaks to vanish (Figure 4 (a)-(b)).

5

Time Limiting Effects

(a) 150 Day Sample (b) 200 Day Sample

Figure 3
Showcase of the drowning effects of extended sampling periods.

Period Limiting Effects

(a) 50 Day Maximum Period (b) 200 Day Maximum Period

Figure 4
Showcase of the drowning effects of extended period (scale) axis.

Alternate Wavelets

Alternative Wavelets are trialed but yield non-definitive results (Figure 5).
Given the sensitivity of sampling duration and period axis settings in the clar-
ity of Morlet transform results, it is believed this is the likely cause for lack of
clarity in the alternate WT plots. Of the three wavelets trialed, Morlet provides
the greatest frequency localisation and least time localisation. In switching to
a wavelet with weaker frequency clarity, it is suspected the prominent higher
period peaks (Figure 4) delocalise in frequency and obscure the lunar peaks.

6

This belief is supported by noting the oscillatory Mexican Hat wavelet provides
clearer low period peaks than the time localised Gaussian Wavelet (Figure 5).
For succinctness water temperature plots are provided only but it should be
noted the behaviour of interest is ubiquotess across measurement categories.

Alternate Wavelets

Figure 5
Results for Gaussian and Mexican Hat wavelet analysis. Observe lack of
frequency space clarity attributable to the time localised nature of the

wavelets.

All plots feature cone of influence (CoI) markings (red diagonal lines). These
mark regions beyond which data may be contaminated by edge effects inherent
in the WT process. This limitation consistently provides no issue as statistically
significant results lie within these boarders for all attributes investigated. The
extent of CoI presence is dependent on the Wavelet chosen [2].

7

Conclusion

Statistically significant results for the presence of synodic (29.5 day) and mixed
(28 day) lunar cycles within sea level, water temperature, air temperature, baro-
metric pressure, wind direction, wind gust and wind speed are located within
the first 100 days of the year 2000. These results are confirmed to the same sig-
nificance levels in subsequent years 2001 and 2002 indicating a consistent link
between lunar period and the analysed ocean features.

8

References

[1] Rowell, G 2020, Data Analysis and Modelling Course Notes, Data Analysis
and Modelling, University of Adelaide

[2] C. Torrence, G. Compo, 1998, A Practical Guide to Wavelet Analysis, Pro-
gram in Atmospheric and Oceanic Sciences, University of Colorado, Boulder,
Colorado

9

Appendix

Following are additional illustrative plots (Item 1) and the MATLAB software
used in the generation of all plots included in this report.

Alternate Sample Year Example

Item 1
Water Temperature is provided here as an illustrative example. Consistent
year-to-year features arise for all remaining features and corresponding WT

plots are available upon request.

10

Table of Contents
 .. 1
Wavelet Settings ... 2
Display Settings .. 2
Plotting .. 2

%close all
clear all

TEST = importdata('2019_1.txt');
TEST = TEST.data(:,12);
Testf = 24*60;

Data0 = importdata('2002.txt');
data0 = Data0.data(:,:);

Data1 = importdata('2001.txt');
data1 = Data1.data(:,:);

Data2= importdata('2002.txt');
data2 = Data2.data(:,:);

%Connect years
data = cat(1,data0,data1,data2);

%Extract Data
SL = data(:,1);
SL = (SL > -9000) .* SL;

WTemp = data(:,2);
WTemp = (WTemp > -9000) .* WTemp;

ATemp = data(:,3);
ATemp = (ATemp > -9000) .* ATemp;

P = data(:,4);
P = (P > -9000) .* P;

Res = data(:,5);
Res = (Res > -9000) .* Res;

ARes = data(:,6);
ARes = (ARes > -9000) .* ARes;

WDir = data(:,7);
WDir = (WDir > -9000) .* WDir;

WGus = data(:,8);
WGus = (WGus > -9000) .* WGus;

1

WS = data(:,9);
WS = (WS > -9000) .* WS;

Wavelet Settings
%Data to Plot
%SL, WTemp, ATemp, P, Res, ARes, WDir, WGus, WS
Choice = WTemp;

%Wavelet Choice
WN = "MH";

%Set sample frequency points per day
fsamp = 24;

%Set period search range
Tmin = 1;
Tmax = 36;

%Set number of points to sample
nmax = 2^14;

Days = 100;
nmax = Days * fsamp;

%Set noise filter and sigma level
filter = true;
sigma = 2;

%Set Decimation Factor
d = 1;

Display Settings
%Number of disections for x axis and labels
xdis = 10;

%Specify axis labels
ticks = linspace(1,nmax,xdis);
xlabels = round(ticks/fsamp,0);

%Set title and file name
FILENAME = "Pressure";

Plotting
%Set frequency range to scan
fmin = 1/(Tmax);
fmax = 1/(Tmin);

%figure
%plot(TEST)

2

%WavT(Choice, WN, fsamp, fmin, fmax, nmax, d, filter, sigma, xdis,
 xlabels, FILENAME)

Published with MATLAB® R2018b

3

% y == data
% WN == Wavelet name, EG "MH", "GW", "MW"
% fsamp == Sampling freq of data
% fmin == minimum frequency to plot
% fmax == maximum frequency to plot
% nmax == maximum number of time data points (Make power of 2 for
 improved
% FT performance
% d == Only use every d'th time data point
% filter == apply a noise filter (boolean)
% xdis == number of disections for xaxis ticks
% xlabels == array of (xdis) timestamps
% Note: xlabels mark the time at the start of the (xdis)'th
% degment. EG: if nmax == 10, tmax = 10sec, xdis = 2, then
% xlabels is a 2-element array: [0,5]
function WavT(y, WN, fsamp, fmin, fmax, nmax, d, filter, sig, xdis,
 xlabels, FILENAME)

 %Define Wavelets
 %Mexican Hat
 if(WN == "MH")
 MH.Func = @(t, t0, s) (1 - ((t-t0)./s).^2).*exp(-0.5*((t-t0)./
s).^2);
 MH.Norm = @(s, Y) (2*pi*s)*Y;
 MH.S_to_f = @(fs, s) (fs) .* ((2*pi / sqrt(2.5)) .*
 s).^(-1);
 MH.name = "Mexican-Hat";
 MH.coi = @(scale) sqrt(2)*scale;
 WF = MH;
 end

 %Gaussin Wavelet
 if(WN == "GW")
 GW.Func = @(t, t0, s) pi^(-0.5) * exp(-0.5*((t-t0)./s).^2);
 GW.Norm = @(s, Y) (2*pi*s)*Y;
 GW.S_to_f = @(fs, s) (fs) .* ((2*pi / sqrt(0.5)) .*
 s).^(-1);
 GW.name = "Gaussian";
 GW.coi = @(scale) sqrt(2)*scale;
 WF = GW;
 end

 %Morlet Wavelet - w0 must satisfy admissability critereon
 if(WN == "MW")
 w0 = 6;
 C = (1 + exp(-w0^2) - 2*exp((-3/4)*w0^2))^(-1/2);
 MW.Func = @(t, t0, s) C *(1/(pi^0.25)) .* exp(1i*w0.* ((t-
t0)./s)) .* exp(- ((t-t0)./s).^2 / 2);
 MW.Norm = @(s, Y) (2*pi*s)*Y;
 MW.S_to_f = @(fs, s) (fs) .* ((4*pi / (w0 + sqrt(2 +
 w0^2))) .* s).^(-1);
 MW.name = "Morlet";

1

 MW.coi = @(scale) sqrt(2)*scale;
 WF = MW;
 end

 %Paul Wavelet
 PW.Func = @(t, t0, s) ((-8)/(sqrt(pi*24))) .* (1 - 1i* ((t-t0)./
s)).^3;
 PW.Norm = @(s, Y) (2*pi*s)*Y;
 PW.S_to_f = @(fs, s) (fs) .* ((4*pi/5) .* s).^(-1);
 PW.name = "Paul";
 PW.coi = @(scale) scale*sqrt(2);

 %Decimate and truncate data
 %Improves quality of WT
 %WT is best for short time data sets
 y = y(1:d:nmax);
 fSamp = fsamp/d;

 %Convert to power spectrum
 Pyy = (abs(fft(y))).^2;
 Y = fft(y);
 stop = length(Pyy);

 %Set zero point for imaginary FT component
 t = 1:stop;
 t0 = stop/2;

 %Set scale array using fmin and fmax
 smax = WF.S_to_f(fSamp,fmin);
 smin = WF.S_to_f(fSamp,fmax);
 scale = linspace(smin,smax, 100);

 %Perform Transform
 WT = W_T(scale, t, t0, Y, stop, WF);

 %Apply a Noise Filter if filter==true
 if(filter)
 r = sig*std(y)*randn(1,length(y));
 R = fft(r);
 WTN = W_T(scale, t, t0, R', stop, WF);
 %Set signal beow noise to be zero
 WT = Filter(WT, WTN, scale, stop);
 end

 %Plot
 Plot_WT(t, scale, WT, fSamp, WF, filter, xdis, xlabels, FILENAME);

Not enough input arguments.

Error in WavT (line 18)
 if(WN == "MH")

2

DEPENDENCIES
 function Plot_WT(t, scale, WTd, fSamp, WF, filter, xdis, xlabels,
 FILENAME)
 %Plot a Wavelet data set WT

 %Final integer specifies the number of contours to render
 %figure
 contourf(t, scale, abs(WTd),20);
 axis ij;
 hold on;

 %Mark Lunar Siderial Period
 Moon = 0*t + WF.S_to_f(fSamp,1/(27.8));
 plot(Moon,'k-.','LineWidth',2)

 %Mark Lunar Synodic Period
 Moon = 0*t + WF.S_to_f(fSamp,1/(29.5));
 plot(Moon,'k--','LineWidth',2)

 %Create scale axis
 %Set s to be multiple of 10 in length
 slen = floor((length(scale)/10)) * 10;

 s = scale(1:slen/10:slen);
 yticks(s);
 yticklabels(s);
 ylabel('Scale');

 %Create frequency axis
 yyaxis right
 f = WF.S_to_f(fSamp,s);
 yticks(s);
 yticklabels(1./f);
 ylabel('Period (Days)');

 %Create time axis
 time = t(1:length(t)/xdis:length(t));
 xticks(time);
 xticklabels(xlabels);
 xlabel('Time (Days)');

 %Define and plot Cone of Influence
 coi = WF.coi(scale);
 t0n = t(1:length(coi));
 plot(scale,coi,'r-');
 plot(max(t) - scale, coi, 'r-');
 axis ij

 %Set labels and axis format
 axis([0 length(t) scale(1) scale(length(scale))])

 if(filter == false)

3

 title({'\fontsize{13}' + FILENAME + " Spanning " +
 xlabels(end) + " Days",'\fontsize{10}' + WF.name + ' Wavelet , Point
 Average: ' + d, "Noise Filter: " + filter});
 else
 title({'\fontsize{13}' + FILENAME + " Spanning " +
 xlabels(end) + " Days",'\fontsize{10}' + WF.name + ' Wavelet , Point
 Average: ' + d, "Noise Filter: " + filter + " , \sigma = " + sig});
 end

 %Save result
 saveas(gcf, FILENAME, 'epsc');
 saveas(gcf, FILENAME, 'jpeg');
 hold off
 end

 function result = W_T(scale, t, t00, Y, stop, WF)
 %Produce the WT of Y using Wavelet Function WF
 WTr = zeros(length(scale),stop);

 for ii = 1:length(scale)
 %Pick out scale scalar value
 s = scale(ii);
 %Set wavelet function
 w = WF.Func(t, t00, s);
 %Swap 1st and 2nd half of wavelet function in prep. for
 ifft
 %Only select 1:stop # of points
 w = [w(stop/2:stop) w(1:(stop/2-1))];
 %Normalize wavelet function wrt s
 W = WF.Norm(s, fft(w));
 %Calculate time domain for current scale value
 WTr(ii,:) = ifft(conj(W').*Y);
 end
 result = WTr;
 end

 function result = Filter(WTtf, WTN, scale, stop)
 %Set all WT value below WTN to ~zero
 for ii = 1:length(scale)
 for jj = 1:stop
 if abs(WTtf(ii,jj)) < abs(WTN(ii,jj))
 WTtf(ii,jj) = eps;
 end
 end
 end
 result = WTtf;
 end

end

Published with MATLAB® R2018b

4

