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1 Introduction

The concept of equilibrium was introduced in 1803 when French chemist
Claude Berthollet found that chemical reactions are reversible [1]. To
be at equilibrium, each reactant and product within a chemical reaction
must be at equilibrium and the rate of the forward reaction must equal
the rate of the reverse reaction. An important feature of a chemical
reaction is how it behaves over time and whether or not it reaches equi-
librium, but it is often difficult to experimentally determine this. Instead,
it is possible to model chemical reactions using mathematical techniques
which can more easily handle a process having numerous parameters and
very large or small time requirements.

In 1906, William Bray first reported the relationship between iodine and
chlorine dioxide when he used the oxidation of iodide ions by chlorine
dioxide to assist in the analytical determination of chlorine dioxide [2].
This reaction can be modelled by the following ODE system which will
be studied in this investigation:

dX

dt
= K1 −K2X −

4K3XY

U +X2

dY

dt
= K2X −

K3XY

U +X2

where X and Y are the concentrations of iodine and chlorine dioxide,
respectively, t is time, and K1, K2, K3 and U are positive constants.

In this report we will analyse this system using techniques from bifur-
cation theory and numerical analysis in order to investigate the above
relationship between iodine and chlorine dioxide over time. This sys-
tem is derived from the chlorine dioxide-iodine-malonic acid reaction,
which has been heavily studied due to its oscillatory properties and its
demonstration of symmetry-breaking, reaction-diffusion Turing patterns
[4]. Our primary focus is to investigate the hypothesis that this reaction
tends monotonically towards equilibrium. As this reaction is known to
be oscillatory in nature, we will utilise sensitivity analysis to determine
whether there are points at which the reaction switches from oscillatory
behaviour to reach equilibrium.
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2 Background

2.1 Bifurcation Theory

Bifurcations are defined as qualitative change in behaviour of the solu-
tions to a system of ODE’s, as parameters are varied. In this scenario,
the parameters to be varied are the positive constants K1, K2, K3 and U.
We use bifurcation theory in order to study both the behaviour of chem-
ical reactions as they tend towards their equilibrium, as well as deter-
mining the equilibrium points of the chemical reactions themselves.
Consequently, we can apply bifurcation theory to the iodine - chlorine
dioxide chemical reaction; determine the equilibrium points of the reac-
tion, and explore the hypothesis that chemical reactions tend monotoni-
cally towards equilibrium.

2.2 Model Description

The chlorine dioxide-iodine-malonic acid reaction can be represented with
the following model, known as the Lengyel-Epstein model [4]:

MA + I2 ⇒ I− + H+

ClO2 + I− → ClO −
2 + 0.5 I2

ClO −
2 + 4 I− + 4 H+→2I2 + Cl− + 2 H2O

To turn this system into a system of differential equations, it is assumed
that not all of the reactants react at the same rate and so the reactants
that react comparatively slower can be treated as constants. In these
systems, MA,ClO2 and I2 are treated as constants and as a result (as
well as ignoring H+, Cl− and H2O) we focus on ClO −

2 and I−. The
resulting system can then be written as:

A + B⇒ I−

C + I− → ClO −
2 + 0.5 B

ClO −
2 + 4 I−→2 B + D

From this, the change in concentration of ClO −
2 and I− can be found

which gives us the resultant ODE system, which is unusual because it
is substrate-inhibited1 and autocatalytic2, as well as being oscillatory in

1Substrate-inhibited: The product of an enzyme reaction inhibits the enzyme’s
activity

2Autocatalytic: One of the reaction products is also a catalyst for the same or a
coupled reaction
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nature and producing Turing structures [3, 2].

3 Mathematical Methods

3.1 Visualisation of Process

In order to garner a higher intuition for the behaviour of our system
it is valuable to visualise the equation dependence on the parameters
involved. As such MATLAB graphing software is employed to provide
this insight, results are displayed in section 4.

3.2 Non-dimensionalisation

The ODE system can be non-dimensionalised in order to reduce the num-
ber of parameters in the system in hopes of making analysis easier as it is
preferable to see how a solution changes in response to fewer parameters.
The method for non-dimensionalising is in Appendix section 6.1. This
process produces the following system:

dX̂

dt̂
= m− X̂ − 4X̂Ŷ

1 + X̂2

dŶ

dt̂
= n

(
X̂ − X̂Ŷ

1 + X̂2

)
Where

m =
K1

K2

√
U
, n =

K3

K2

√
U
,X =

√
UX̂, Y =

K2U

K3

Ŷ , t =
1

K2

t̂

3.3 Fixed points

The fixed points of the system can be found using the non-dimensionalised

system. The fixed points are the points where dX̂
dt̂

= 0 and dŶ
dt̂

= 0.
This process is in Appendix section 6.2 and results in:

(X̂∗, Ŷ∗) =

(
m

5
, 1 +

m2

25

)
This is equivalent to

(X∗, Y∗) =

(
K1

5
√
UK2

, 1 +
K2

1

25UK2
2

)
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3.4 Jacobian

The Jacobian of the non-dimensionalised system was found in Appendix
section 6.3. The general Jacobian is J(x) =−1− 4Ŷ

(
1−X̂2

(1−X̂2)2

)
−4X̂
1+X̂2

n− nŶ
(

1−X̂2

(1−X̂2)2

)
−nX̂
1+X̂2


The Jacobian at the value of the fixed point is J(m

5
, 1 + m2

25
) =[

3m2−125
25+m2

−20m
25+m2

2nm2

25+m2
−5nm
25+m2

]

3.5 Eigenvalues of the Jacobian

The eigenvalues of this problem can be found by taking the determinant
of the above Jacobian. This process is in Appendix section 6.4 and
produces the eigenvalues:

λ1,2 =
3m2 − 5nm− 125±

√
(5nm− 3m2 + 125)2 − 4(25nm3 + 625nm)

50 + 2m2

Eigenvalues play an important part in determining the stability of a
steady state. A steady state (X̂∗, Ŷ∗) is hyperbolic if all the eigenvalues
of the Jacobian J(X̂∗, Ŷ∗) have non-zero real part. Given that a steady
state is hyperbolic, the Hartman-Grobman Theorem (HG Thm) applies.
The HG Thm states that given that a steady state is hyperbolic, then
in a small neighbourhood of the steady state, the phase portrait of the
non-linear system is equivalent to the linearised system.

For the non-dimensionalised system, both m,n are positive given that
K1, K2, K3, U are positive. It is easy to observe that λ1,2 6= 0 which

implies that the steady state (m
5
, 1 + m2

25
) is hyperbolic. This non-linear

system can be analysed using the linearised system.

In general, the eigenvalues of the Jacobian are complex [5]. The complex
part of the eigenvalues determine the oscillatory behaviour, while the real
part determines the stability. The stability depends on whether the real
part of the eigenvalues are negative or positive. Let the real part of the
eigenvalue for this system be α.

Re(λ1,2) = α =
3m2 − 5nm− 125

50 + 2m2
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If α is positive, the steady state is unstable. α is positive when,

3m2 − 5nm− 125

50 + 2m2
> 0⇒ n <

3m

5
− 25

m

If α is negative, the steady state is stable. α is negative when,

3m2 − 5nm− 125

50 + 2m2
< 0⇒ n >

3m

5
− 25

m

We will now consider values of m,n that will result in stable and unstable
behaviour. This will be discussed in the Section 4.
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4 Results

4.1 Visualization

In plotting the non-dimensional chemical population gradient dependence
on the non-dimensional parameters m and n the following gradient plots
were created:
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Phase portraits for various values of m and n in the non-dimensionalised
system are plotted below. The steady state for each plot is denoted by a
red star.

Figure 1: m = 2, n = 5

Figure 2: m = 5, n = 2
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Figure 3: m = 5, n = 7

Figure 4: m = 7, n = 1

5 Conclusions
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6 Appendix

6.1 Non-dimensionalisation
dX

dt
= K1 −K2X −

4K3XY

U +X2
(1)

dY

dt
= K2X −

K3XY

U +X2
(2)

Let X = XcX̂, Y = YcŶ , t = tct̂ (?) and note that dt̂
dt

= 1
tc

Substitute (?) into (1):
The LHS is:

dX

dt
=
Xc

tc

dX̂

dt̂

We combine this with the RHS and get

dX̂

dt̂
=

tc
Xc

[
K1 −K2XcX̂ −

4K3XcX̂YcŶ

U +X2
c X̂

2

]

dX̂

dt̂
=

tc
Xc

K1 − tcK2X̂ −
tcK3Yc4X̂Ŷ

U(1 + X2
c

U
X̂2)

Now let
X2

c

U
= 1→ Xc =

√
U

tcK2 = 1→ tc =
1

K2

tcK3Yc
U

= 1→ Yc =
U

tcK3

=
K2U

K3

Then let the constant m be

m =
tc
Xc

K1 =
K1

K2

√
U

Thus, the non-dimensional version of (1) is

dX̂

dt̂
= m− X̂ − 4X̂Ŷ

1 + X̂2

Solving similarly for (2):

dŶ

dt̂
=
tc
Yc

[
K2XcX̂ −

k3XcX̂YcŶ

U +X2
c X̂

2

]
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dŶ

dt̂
=
tc
Yc
K2XcX̂ −

K3XctcX̂Ŷ

U(1 + X2
c

U
X̂2)

Substituting in the values of Xc =
√
U, tc = 1

K2
, Yc = K2U

K3
we get

dŶ

dt̂
=
K3K2

√
U

K2K2U
X̂ − K3

√
UX̂Ŷ

K2U(1 + X̂2)

dŶ

dt̂
=

K3

K2

√
U
X̂ − K3X̂Ŷ

K2

√
U(1 + X̂2)

Let the constant n be

n =
K3

K2

√
U

Then the non-dimensional version of (2) is

dŶ

dt̂
= n

(
X̂ − X̂Ŷ

1 + X̂2

)

The dimensionless version of the original equation is thus:

dX̂

dt̂
= m− X̂ − 4X̂Ŷ

1 + X̂2

dŶ

dt̂
= n

(
X̂ − X̂Ŷ

1 + X̂2

)
Where

m =
K1

K2

√
U
, n =

K3

K2

√
U
,X =

√
UX̂, y =

K2U

K3

Ŷ , t =
1

K2

t̂

6.2 Fixed points

To find the fixed points we set dX̂
dt̂

= 0 and dŶ
dt̂

= 0
So

dŶ

dt̂
= 0→ n

(
X̂ − X̂Ŷ

1 + X̂2

)
= 0

nX̂ =
nX̂Ŷ

1 + X̂2

1 =
Ŷ

1 + X̂2
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And so Ŷ∗ = 1 + X̂2

And also
dX̂

dt̂
= 0→ m− X̂ − 4X̂Ŷ

1 + X̂2

We substitute in Ŷ∗ = 1 + X̂2 to get

m− X̂ − 4X̂(1 + X̂2)

1 + X̂2)
= 0

m− X̂ − 4X̂ = 0

m− 5X̂ = 0→ X̂∗ =
m

5

And so then Ŷ∗ = 1 + m2

25

So thus we have a fixed point at

(X̂∗, Ŷ∗) =

(
m

5
, 1 +

m2

25

)
As we have previously let m = K1√

UK2
, this is equivalent to

(X∗, Y∗) =

(
K1√
UK2

5
, 1 +

( K1√
UK2

)2

25

)

(X∗, Y∗) =

(
K1

5
√
UK2

, 1 +
K2

1

25UK2
2

)
6.3 Jacobian

Our non-dimensionalised system is:

dX̂

dt̂
= m− X̂ − 4X̂Ŷ

1 + X̂2
= m− X̂ − 4Ŷ

(
X̂

1 + X̂2

)
= f(X̂, Ŷ )

dŶ

dt̂
= n

(
X̂ − X̂Ŷ

1 + X̂2

)
= nX̂ − nŶ

(
X̂

1 + X̂2

)
= g(X̂, Ŷ )

The Jacobian takes the form J(x) =[
fX(x) fY (x)
gX(x) gY (x)

]
For this system the derivatives are

fX̂ = −1− 4Ŷ

(
(1 + X̂2)(1)− X̂(2X̂)

(1 + X̂)2

)
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= −1− 4Ŷ

(
1 + X̂2 − 2X̂2

(1 + X̂2)2

)

= −1− 4Ŷ

(
1− X̂2

(1− X̂2)2

)
Therefore,

fX̂ = −1− 4Ŷ

(
1− X̂2

(1− X̂2)2

)
and

fŶ =
−4X̂

1 + X̂2

and

gX̂ = n− nŶ

(
(1 + X̂2)(1)− (X̂)(2X̂)

(1− X̂2)2

)

= n− nŶ

(
1− X̂2

(1− X̂2)2

)
Therefore,

gX̂ = n− nŶ

(
1− X̂2

(1− X̂2)2

)
and

gŶ =
−nX̂

1 + X̂2

Therefore the Jacobian is: J(x) =−1− 4Ŷ
(

1−X̂2

(1−X̂2)2

)
−4X̂
1+X̂2

n− nŶ
(

1−X̂2

(1−X̂2)2

)
−nX̂
1+X̂2


Then J(m

5
, 1 + m2

25
) =−1− 4(1 + m2

25
)
(

1−m
5

2

(1−m
5

2)2

)
−4(m

5
)

1+m
5

2

n− n(1 + m2

25
)
(

1−m
5

2

(1−m
5

2)2

)
−n(m

5
)

1+m
5

2



=

−(1+
m2

25
)−4(1−m2

25
)

(1+m2

25
)

−4m
5

25+m2

25

n(1+m2

25
)−n(1−m2

25
)

(1+m2

25
)

−nm
5

25+m2

25
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=

−1−
m2

25
−4+ 4m2

25
25+m2

25

−4m
5

( 25
25+m2 )

n+nm2

25
−n+nm2

25
25+m2

25

−nm
5

( 25
25+m2 )



=

−5+
3m2

25
25+m2

25

−20m
25+m2

2nm2

25
25+m2

25

−5nm
25+m2


=

(−125+3m2

25

) (
25

25+m2

) −20m
25+m2(

2nm2

25

) (
25

25+m2

) −5nm
25+m2


So then J(m

5
, 1 + m2

25
) = [

3m2−125
25+m2

−20m
25+m2

2nm2

25+m2
−5nm
25+m2

]

6.4 Eigenvalues of the Jacobian

We find

detJ =

∣∣∣∣∣
[(

3m2−125
25+m2 − λ

)
−20m
25+m2

2nm2

25+m2

( −5nm
25+m2 − λ

)]∣∣∣∣∣
=

(
3m2 − 125

25 +m2
− λ
)(

−5nm

25 +m2
− λ
)
−
(
−20nm

25 +m2

)(
2nm2

25 +m2

)
= 0

=
(3m2 − 125)(−5nm)

(25 +m2)2
−
(

3m2 − 125

25 +m2

)
λ+

(
5nm

25 +m2

)
λ+λ2+

40nm3

(25 +m2)2
= 0

=
−15nm3 + 625nm

(25 +m2)2
+
−3m2 + 125 + 5nm

25 +m2
λ+ λ2 +

40nm3

(25 +m2)2
= 0

= λ2 +
5nm− 3m2 + 125

25 +m2
λ+

40nm3 − 15nm3 + 625nm

(25 +m2)2
= 0

= λ2 +
5nm− 3m2 + 125

25 +m2
λ+

25nm3 + 625nm

(25 +m2)2
= 0

Hence then

λ1,2 =

−5nm−3m2+125
25+m2 ±

√(
5nm−3m2+125

25+m2

)2 − 4(1)
(

25nm3+625nm
(25+m2)2

)
2

=

3m2−5nm−125
25+m2 ±

√
(5nm−3m2+125)2−4(25nm3+625nm)

(25+m2)2

2
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=
3m2 − 5nm− 125±

√
(5nm− 3m2 + 125)2 − 4(25nm3 + 625nm)

2(25 +m2)

And hence

λ1,2 =
3m2 − 5nm− 125±

√
(5nm− 3m2 + 125)2 − 4(25nm3 + 625nm)

50 + 2m2
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