
Statistical Modeling and Inference

Assignment IV

—–

Joseph Pritchard - Adelaide University

April 11, 2023

Question I

a

To linearise, perform the following adjustments
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Writing explicitly as a linear equation

y′ = β0 + β1x
′

where y′ = 1
y , x

′ = 1
x , β0 = 1

α and β1 = δ
α

b

We may write a linear regression model equation as

Y = Xβ

where y is our response vector containing yi response variables, X is the design
matrix and β = [β0, β1]

T is the vector of model parameters.
We know the least square estimates for βi are given by
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[β0, β1]
T = (XTX)−1XTY

So to find least square estimates for the model parameters we can write the
right hand side quantity in an explicit form. First find XTX
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. .
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Where the Sigma symbol is taken to mean a sum over the index i. Now invert
this matrix
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We also need the quantity
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Combining the above we have[
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where x′
i =

1
xi
, y′i =

1
yi
, β̂0 = 1

α̂ and β̂1 = δ̂
α̂ . To find the estimated value of

the parameter δ̂, simply take the ratio of the two model parameters

β̂1

β̂0

=
δ̂

α̂
(α̂) = δ̂
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c

Our model, including the error term ϵ, is

y′ = β0 + β1x
′ + ϵ

Back-transforming to our original variables gives

1

y
= β0 + β1

1

x′ + ϵ

y =
1

1
α + δ

α
1
x + ϵ

y =
αx

x+ δ + αϵ

If we instead fir the population growth model directly we would have a model

y =
αx

x+ δ
+ ϵ

Notice the error term appears with a different effect on the resulting response
variable and so the two models are not equivalent.

d

i

We know the residual variance, Se, obeys the relation

S2
e =

||Y −Xβ̂||
n− p

where n is the sample size and p is the number of model parameters.
When calculating variance, we divide by the number of degrees of freedom in the
model when standardising and so the residual variance has degrees of freedom
n − p. The R output provided states the degrees of freedom for the residual
variance is 13 and we know the model to have 2 parameters thus the sample
size is

n = d+ p = 13 + 2 = 15

where d is the number of degrees of freedom.
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ii

Response vector is

Y =


1 1

y1

1 1
y2

1 1
y3

1 1
y4

 =


1 1
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1 1
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1 1
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1 1
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 (8)

Design vector is

X =


1 1

x1

1 1
x2

1 1
x3

1 1
x4

 =


1 1

4
1 1

3
1 1

7
1 1

1

 (9)

iii

iv

The confidence interval for the parameters of the linear regression model, taken
from the notes, is

λT β̂ = tn−p,α2
Se

√
λT (XTX)−1λ

setting λ equal to (1, 0) we have the confidence interval for β0. We know Se

from the R output to be 0.0002495, we calculated n and p previously, alpha is
the critical value of our confidence interval - in this case α = 0.1. The only
quantity we now need is the first entry of the matrix XTX. In linear regression,
the first column of the design matrix act to pick out the intercept value and
thus are all unit value. As a result, the quantity XTX is simply the sample size
n. The confidence interval is then

β0 ± t13(0.0002495)

√
1

15

= β0 ± (1.770933)(0.0002495)(0.2581989)

= β0 ± 0.0001140846

v

Question II

a

The likelihood function of our model is

l =

n∏
1

f(xi, θ)
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were xi are our predictor variables and θ is the vector of parameters. In our
case we have

l =

n∏
1

(βlog(xi) + ϵi)

where

ϵi =
1

σ
√
2π

exp

(
− x2

i

2σ2

)
The log likelihood function is given by the log of this function

L =

n∑
1

log (βlog(xi) + ϵi)

where for brevity the gaussian term has been left as ϵi.

b

The score vector is the derivative of the log likelihood function with respect to
each of the model parameters β and σ2. Begin by noting

dσ

dσ2
= (

dσ2

dσ
)−1 =

1

2σ

Thus
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1
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d

dσ
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)
Evaluating the gaussian derivative gives

d
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d

dσ
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σ
√
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)
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2π
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i

2
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Combining the above
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=

1

2σ

n∑
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(
1

βlog(xi) + ϵi
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1√
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)(
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)
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2
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The β case is much simpler

5



dL

dβ
=

d

dβ

n∑
1

log(βlog(xi) + ϵi)

=

n∑
1

log(xi)

βlog(xi) + ϵi

c

The maximum likelihood estimations for the parameters β and σ are found by
setting the score vector entries to zero and solving for the parameter values.
With the above calculated analytic expressions for the score vector entries this
problem seems highly complex and a solution has not yet been found.

d

The fisher information matrix is the negative of the expectation value of the
matrix of mixed partial derivatives of the log likelihood function with respect
to the model parameters

Iθ(ij) = −E

[
d

dθi

dl

dθj

]

Question III

a

The resulting scatter plot is shown in figure I.

Figure I

From the produced plot, the data appears negative and linear for Type II and
Type III crops. The error bars here are relatively narrow such that we may have
reasonable confidence in a relationship. A negative and linear relationship also
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appears present for type I crop but due to large error bars it is not possible to
confidently state this assumption is not erroneous.

b

It is important that the predictor variable Type is specified as a Factor of the
model. If this is not done, R will attempt to fit a slope line to this variable,
whilst we want Type to modify our current intercept and slope line of Salinity.

The three linear models are fitted in R (Appendix). The results for the separate
regression model are

y1 = 5.7874− (0.2902)x

y2 = 2.9467− (1.6772)x

y3 = 22.4455− (7.9971)x

where the y subscript labels the crop type.

c

The null hypothesis is that the interaction coefficient is zero. The alternate
hypothesis is that the interaction coefficient is non-zero. The test statistic we
use is:

t =
λT β̂

Se

√
λT (XTX)

−1
λ

We have two interaction terms to test - Salinity with each of Type I and Type
II crop. The p value for Type II is 0.100612. To deem an interaction term sta-
tistically significant we must see the p value fall above the 5 percent significance
level. This level is not reached in this case so the interaction term is statistically
insignificant.
For the Type III interaction case we have a p value of 9.56−10, which is well
above the 5 percent significance level and so this term is statistically significant.

d

A better fit is given by a lower BIC value. In this case, we see this is achieved
by model 3, separate regression, with a BIC score of 418.3894..

e

To assess the assumptions of linear regression we analyse the plots below.
Linearity - The data points in the Residuals vs Fitted plot begin to deviate
upwards of the central horizontal line for larger fitted values, indicating non-
linearity
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(a) Figure 4 (b) Figure 5

(c) Figure 6

Normality - The residuals follow a straight line across the range of theoreti-
cal quantiles however deviate above the linear slope for high quantile values,
indicating the residuals are NOT normally distributed

Equal Variance - Homoscedasticity - We again witness a deviation above the
horizontal line. For higher fitter values, indicating unequal variance
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