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1 Question 1

The solution set to the 1-Dimensional infinite potential well on the inter-
val (0,a) is well known and upon projection into position space yields the
normalised eigenfunctions and eigenenergies
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Giving the lowest three eigenfunctions and eigenenergies as
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a) First order correction to eigenenergy €, of eigenstate |n) is given by
B = (n|V|n)

For the ground state case n = 1 of the infinite square well, using the solutions
above, this is
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Given that we know the wave function of the ground state solution to the
infinite square well to be symmetric about the point a/2, we know the prob-
ability density will also be symmetric about this point, being 0.5 on both
sides. Thus
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The second excited state wave function 19(z) is again symmetric about the
point ¢ and so the same logic holds thus

a/ a
BV = [ * defa(@)? + (0 / " dalio)f

a/2
= b/o x|y (x)]? (3)
b

2

b) First order correction to the wave function is
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The ground state correction is covered by the case n = 1. Note the eigenen-
ergies for the infinite square well given above lead the denominator to take
the simplified form
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In the ground state case n = 1 this reduces to
m2h? 9
2Ma? (1=m?)

Evaluating the numerator
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Using the relation
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we then have
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For odd values of m the sine expressions vanishes so we need only consider

even values of m. Define a new variable n such that m = 2n, the above then
becomes
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Combining the numerator and denominator the total expression is then
2n|V 1)  2Ma*  Abn(—1)"*
el — e 72(1 — 4n?) w(4n2 — 1) (©)
4a’b
=—F2M(-1)"
m3(4n? — 1)2 (=1)
And so first order correction to the ground state wave wavefunction is
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c) Take the second order correction to the energy
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In the closure approximation™® we assume the denominator to be approxi-
mated by some average energy separation
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So approximation for the second order correction is then given by
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Altering the sum to include the case m = n by subtracting outside the sum,
then invoking the completeness relation gives

5 1 2
= 5z (W H In) + <7 (0] H [n)

E/
AFE

Solving the first term for the ground state case n =1
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Each term evaluated independently gives
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Since the ground state wave function is symmetric about a/2 so is its prob-
ability density and hence the integral evaluates to 0.5 giving
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In part (a) we found
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Second expression is given by
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So total approximation for the correction to the energy is
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Where AFE can be chosen as to be a reasonable average of the energy spacings.
Setting this as the maximum it can be
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And so approximate energy upper bound is then
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2  Question 2
Upper bound to the ground state energy Ej is given by
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Where H is the hamiltonian in question. Note the trial function Ae= is in
terms of r, thus it is reasonable to expand the laplacian of
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in spherical coordinates. Evaluating each part of the upper bound separately
gives
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Making use of the relation
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The hamiltonian term is given by
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The second term is given by
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And so total expression is
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Now combining numerator and denominator to find upper bound for Ey we
have

WIHW) 1 s
Wiy ama o

Finding the minimum of this upper bound by taking the derivative with
respect to a and setting it equal to zero

d 1 3a’k —1
( + ¢ ): > +3ak =0

da \ 2ma? 2 ma

7



1
3ak = —

mad
1
4 _
“ ~ 3mk
1
2 _
“ = 3mk

Substituting this minimum for a into our expression for the energy upper

bound
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Recalling the oscillation frequency is defined as w = \/% we then have

Ey < V3w

as an upper bound for the ground state energy. This gives a value of approx-
imately 1.7321w, noting the exact solution is 0.5w. So our upper bound is
out by approximately 1.2321w.
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