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1 Question 1

The solution set to the 1-Dimensional infinite potential well on the inter-
val (0, a) is well known and upon projection into position space yields the
normalised eigenfunctions and eigenenergies

〈x|ψn〉 =

√
2

a
sin(

nπx

a
) En =

n2π2h̄2

2Ma2

Giving the lowest three eigenfunctions and eigenenergies as

〈x|ψ1〉 =

√
2

a
sin(

πx

a
) E1 =

π2h̄2

2Ma2

〈x|ψ2〉 =

√
2

a
sin(

2πx

a
) E2 =

4π2h̄2

2Ma2

〈x|ψ3〉 =

√
2

a
sin(

3πx

a
) E3 =

9π2h̄2

2Ma2

a) First order correction to eigenenergy εn of eigenstate |n〉 is given by

E(N)
n = 〈n|V |n〉

For the ground state case n = 1 of the infinite square well, using the solutions
above, this is

E
(N)
1 = 〈1|V |1〉

= b

∫ a/2

0

dx|ψ1(x)|2 + (0)

∫ a

a/2

dx|ψ1(x)|2

= b

∫ a/2

0

dx|ψ1(x)|2

(1)
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Given that we know the wave function of the ground state solution to the
infinite square well to be symmetric about the point a/2, we know the prob-
ability density will also be symmetric about this point, being 0.5 on both
sides. Thus

E
(N)
1 =

b

2
(2)

The second excited state wave function ψ2(x) is again symmetric about the
point a

2
and so the same logic holds thus

E
(N)
1 = b

∫ a/2

0

dx|ψ2(x)|2 + (0)

∫ a

a/2

dx|ψ2(x)|2

= b

∫ a/2

0

dx|ψ2(x)|2

=
b

2

(3)

b) First order correction to the wave function is

P̄n |N1〉 =
∑
m6=n

|m〉 〈m|V |n〉
ε(n) − ε(m)

The ground state correction is covered by the case n = 1. Note the eigenen-
ergies for the infinite square well given above lead the denominator to take
the simplified form

ε(n) − ε(m) =
π2h̄2

2Ma2
(
n2 −m2

)
In the ground state case n = 1 this reduces to

π2h̄2

2Ma2
(
1−m2

)
Evaluating the numerator

〈m|V |1〉 = b

∫ a/2

0

dx
2

a
sin
(mπx

a

)
sin
(πx
a

)
+ 0

Using the relation

sin(a)sin(b) =
1

2
(cos(a− b)− cos(a+ b))
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we then have

〈m|V |1〉 =
b

a

∫ a/2

0

dx
(
cos
(πx
a

(m− 1)
)
− cos

(πx
a

(m+ 1)
))

=
b

a

([
a

π(m− 1)
sin
(πx
a

(m− 1)
)]a/2

0

−
[

a

π(m+ 1)
sin
(πx
a

(m+ 1)
)]a/2

0

)

=
b

π

[
sin
(
π
2
(m− 1)

)
(m− 1)

−
sin
(
π
2
(m+ 1)

)
(m+ 1)

]
=

b

π(m2 − 1)

[
(m− 1)sin

(π
2

(m− 1)
)
− (m+ 1)sin

(π
2

(m+ 1)
)]
(4)

For odd values of m the sine expressions vanishes so we need only consider
even values of m. Define a new variable n such that m = 2n, the above then
becomes

〈2n|V |1〉 =
b

π(4n2 − 1)

[
(2n− 1)(−1)n+1 − (2n+ 1)(−1)n

]
=

b

π(4n2 − 1)

[
2n(−1)n+1 − (−1)n+1 + 2n(−1)n+1 + (−1)n+1

]
=

b

π(4n2 − 1)
4n(−1)n+1

(5)

Combining the numerator and denominator the total expression is then

〈2n|V |1〉
ε1 − ε(2n)

=
2Ma2

π2(1− 4n2)

4bn(−1)n+1

π(4n2 − 1)

=
4a2b

π3(4n2 − 1)2
2M(−1)n

(6)

And so first order correction to the ground state wave wavefunction is

∞∑
n=1

(−1)n
8a2bM

π3(4n2 − 1)2
|2n〉

c) Take the second order correction to the energy

E =
∑
m6=n

〈n|H |m〉 〈m|H |n〉
ε(n) − ε(m)
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In the closure approximation(1) we assume the denominator to be approxi-
mated by some average energy separation

∆E ≈ ε(m) − ε(n)

So approximation for the second order correction is then given by

E ′ =
−1

∆E

∑
m 6=n

〈n|H |m〉 〈m|H |n〉

Altering the sum to include the case m = n by subtracting outside the sum,
then invoking the completeness relation gives

E ′ =
−1

∆E
〈n|H2 |n〉+

1

∆E
(〈n|H |n〉)2

Solving the first term for the ground state case n = 1

〈1|H2 |1〉 = 〈1| (H0 + V )(H0 + V ) |1〉
= 〈1|H2

0 + 2V H0 + V 2 |1〉
(7)

Each term evaluated independently gives

〈1|H2
0 |1〉 = ε21

〈1| 2V H0 |1〉 = 2b

∫ a/2

0

dxψ1(x)H0ψ1(x)

H0ψ1(x) =
−1

2M

d2

dx2

√
2

a
sin(

πx

a
)

=
π2

2Ma2
ψ1(x)

(8)

So

〈1| 2V H0 |1〉 =
bπ2

Ma2

∫ a/2

0

dx|ψ1(x)|2

Since the ground state wave function is symmetric about a/2 so is its prob-
ability density and hence the integral evaluates to 0.5 giving

〈1| 2V H0 |1〉 =
bπ2

2Ma2
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In part (a) we found

〈1|V |1〉 =
b

2

And from the same logic

〈1|V 2 |1〉 =
b2

2

Combining all the above gives

〈1|H2 |1〉 = ε21 +
bπ2

2Ma2
+
b2

2

Second expression is given by

〈1|H |1〉 = 〈1|H0 |1〉+ 〈1|V |1〉

= ε1 +
b

2

(9)

So

(〈1|H |1〉)2 = ε21 + bε1 +
b2

4

So total approximation for the correction to the energy is

E ′ =
1

∆E

(
ε21 + bε1 +

b2

4
− ε21 −

bπ2

2Ma2
− b2

2

)
=

1

∆E

−b2

4

(10)

Where ∆E can be chosen as to be a reasonable average of the energy spacings.
Setting this as the maximum it can be

∆E = ε2 − ε1

= ∆E =
π2

2Ma2
(4− 1)

=
3π2

2Ma2

(11)

And so approximate energy upper bound is then

8Ma2

3π2

−b2

4
=

2Ma2

3π2
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2 Question 2

Upper bound to the ground state energy E0 is given by

E0 ≤
〈ψ|H |ψ〉
〈ψ|ψ〉

Where H is the hamiltonian in question. Note the trial function Ae
−r
a is in

terms of r, thus it is reasonable to expand the laplacian of

H =
−1

2m
∇2 + k

r2

2

in spherical coordinates. Evaluating each part of the upper bound separately
gives

〈ψ|ψ〉 =

∫ 2π

0

dφ

∫ π

0

dθsin(θ)

∫ ∞
0

drr2A2e
−2r
a

= 4πA2

∫ ∞
0

drr2e
−2r
a

(12)

Making use of the relation ∫ ∞
0

dxxne−bx =
n!

an+1

We have

〈ψ|ψ〉 = 4πA2

(
2!

( 2
a
)3

)
= 4πA2

(
2a3

8

)
= πA2a3

(13)

The hamiltonian term is given by

〈ψ|H |ψ〉 =
−1

2m
〈ψ| ∇2 |ψ〉+

k

2
〈ψ| r2 |ψ〉

Since

∇2 =
1

r2
d

dr

(
r2
d

dr

)
=

2

r

d

dr
+

d2

dr2
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So

∇2Ae
−r
a =

−2

ar
Ae

−r
a +

1

a2
Ae

−r
a

So

〈ψ| ∇2 |ψ〉 = 4π

∫ ∞
0

drr2
(
−2

ar
A2e

−2r
a +

1

a2
A2e

−2r
a

)
= 4πA2

(
−2

a

∫ ∞
0

drre
−2r
a +

1

a2

∫ ∞
0

drr2e
−2r
a

)
= 4πA2

(
−2

a

a2

4
+

1

a2
a3

4

)
= −πA2a

(14)

The second term is given by

〈ψ| r2 |ψ〉 = 4π

∫ ∞
0

drr4A2e
−2r
a

= 4πA2

(
4!(
2
a

)5
)

= 4πA224a5

32
= 3πA2a5

(15)

And so total expression is

〈ψ|H |ψ〉 =
−1

2m
〈ψ| ∇2 |ψ〉+

k

2
〈ψ| r2 |ψ〉

=
−1

2m
(−πa) +

k

2
πA23πa5

=
πa

2m
+

3πa5k

2

(16)

Now combining numerator and denominator to find upper bound for E0 we
have

〈ψ|H |ψ〉
〈ψ|ψ〉

=
1

2ma2
+

3a2k

2
(17)

Finding the minimum of this upper bound by taking the derivative with
respect to a and setting it equal to zero

d

da

(
1

2ma2
+

3a2k

2

)
=
−1

ma3
+ 3ak = 0
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3ak =
1

ma3

a4 =
1

3mk

a2 =

√
1

3mk

Substituting this minimum for a into our expression for the energy upper
bound

E0 ≤
1

2ma2
+

3a2k

2

=

√
3mk

4m2
+

√
9k2

12mk

=

√
3

2

√
k

m
+

√
3

2

√
k

m

(18)

Recalling the oscillation frequency is defined as ω =
√

k
m

we then have

E0 ≤
√

3ω

as an upper bound for the ground state energy. This gives a value of approx-
imately 1.7321ω, noting the exact solution is 0.5ω. So our upper bound is
out by approximately 1.2321ω.
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