
Data Analysis and Modelling

—–

Probability and Statistics Exam

Joseph Pritchard - Adelaide University

June 19, 2020

Question I

a) We wish to find the sum of probabilities the test provides a true result. This
is given by

P (T = true) =P (T = true|terrorist = false)P (terrorist = false)

+ P (T = true|terrorist = true)P (terrorist = true)
(1)

Substituting our known values we then have

P (T = true) = (0.1)(0.99999) + (0.9)(0.00001)

= 0.100008

= 10.0008%

(2)

b) Observe the following, utilising Bayes rule

P (terrorist = false|T = false) =
P (terrorist = false, T = false)

P (T = false)

=
P (T = false|terrorist = false)P (terrorist = false)∑

terrorist

P (T = false|terrorist)P (terrorist)

(3)

Inserting our known values we then have

P (terrorist = false|T = false) =
(0.9)(0.99999)

(0.1)(0.00001) + (0.9)(0.99999)

= 0.9999989

(4)

c) Same process as (c) setting terrorist and T values to true thus

1

P (terrorist = true|T = true) =
(0.9)(0.00001)

(0.9)(0.00001) + (0.1)(0.99999)

= 0.00008999

(5)

d) Mis-classification occurs when either terrorist = false AND T = true OR
terrorist = true AND T = false. Note the following

P (terrorist = true, T = false) = P (T = false|terrorist = true)P (terrorist = true)

P (terrorist = false, T = true) = P (T = true|terrorist = false)P (terrorist = false)

Substituting our known values we have

P (terrorist = true, T = false) = (0.1)(0.99999)

= 0.099999
(6)

P (terrorist = false, T = true) = (0.1)(0.00001)

= 0.000001
(7)

Giving a total mis-classification probability of

0.099999 + 0.000001 = 0.1

Question II

Here we utilise the functions norm.cdf and norm.expect from the scipy.stats
Python library. The results are

a) 0.841
b) 0.092
c) 5803.75

Question III

Here we use the function quad from the scipy.integrate Python package and act
on sum of two gaussian distributions we define ourselves. The result is

P (x > 8) = 0.9313

Note that an upper bound of 100 is chosen as a limit of integration. Increasing
the upper bound past this point provided negligible improvement.

2

Question IV

For (a), (b) and (c) the Python function poisson and associated methods are
used. The resulting values are

Figure 1:

Question V

For both (a) and (b) the Python functions numpy.cov and numpy.corrcoeff
are used. The resulting matrices are

Figure 2:

Question VI

To find the global minima of the Rosenbrock function, a differential evolution
algorithm is used. Here, n random points in the parameter space are selected
to form the first generation of points. We then create a donor vector for each of
our points, constructed from the other points within our current generation as

Vi = λXbest(1− λ)Xr1 + F (Xr2 −Xr3)

where Xri are the i random points selected, F is a mixing function, Xbest is
the current best point and λ controls the mixing of the current best point. We
then construct a trial vector Ui, where each each element is either the corre-
sponding element in Xi or Vi. The probability of selection from either vector is
controlled by a parameter C. To ensure Ui 6= Xi we then randomly select one
element of Ui and replace it by the corresponding value of Vi. We now evolve to
the next generation of points by choosing the vector Vi or Xi which minimizes
our target function.

3

This algorithm is implemented via the Python differentialevolution function,
where the paramter recombination detemines the mixing variable C. Both the
mixing function F and best mixing value λ are set internally by the function.
To ensure the minima found are indeed global, the function is rerun multiple
times. Each time the 5D minima is unchanged and the 7D minima retains the
same parameter values. The 7D function value changes with each re-seeding
however all values are approximately zero. The results are

Figure 3:

4

Question VII

a) To prevent the likelihood values from becoming too, in order to maximise
the likelihood, we instead minimize the negative log likelihood.

Optimisation is performed by first selecting a set of parameters φi. Then, for
every bin of data, we assume a Poisson spread and evaluate the probability of
observing our measured data given the parameter set φi. We then average over
all bin probabilities to provide an average negative log likelihood. The optimum
result is selected using the genetic algorithm method outlined in question VI.

To provide guidance for parameter search bounds we observe the histogram
plot of the gathered data. In analysing we note a bump in the plot around the
value of 4 along the x axis, suggesting a search for the mean parameter around
this value. Similarly the spread of the bump appears to be around 1 units on
the x axis, suggesting a range for the sigma parameter. Values for the remaining
parameters A and B are found by referencing the values provided in the course
notes and setting bounds capturing these values. Initially optimum parameters
for A and B lie at the boundaries but through boundary adjustment optimisa-
tion is achieved within the parameter bounds.

The resulting MLE values for the parameters A,B, µ and σ are

Figure 4:

An overlay of the background function, signal, background signal sum and raw
data histogram is provided in figure . Note the good fit of the background signal
sum in capturing the bump in the observed data (Figure 5).
b) To provide a confidence level on the rejection of a B = 0 hypothesis, we
define a test statistic as the log ratio of likelihoods as

t = −2ln

(
L(a, b)

L(φi)

)
Here a is the value describing our test hypothesis B = 0, b is the set of pa-

rameters which maximise the likelihood for this test hypothesis and φi are the
parameters calculated previously maximizing the likelihood function. Maximi-
sation of L(a, b) is achieved using the same genetic algorithm described above.
Assuming Wilk’s theorem, we know the test statistic follows a χ2 distribution.

5

Figure 5:

As such we find the value of the test statistic required for 95% confidence in
a χ2 distribution and compare this to our t value calculated. The results are
shown in figure 6.

Figure 6:

6

Appendix

Following is the Python code used in the generation of all plots included in this
exam.

7

import numpy as np

from scipy.stats import norm

from scipy.stats import poisson

import scipy.integrate as integrate

import matplotlib.pyplot as plt

import scipy.optimize as opt

import pandas

from scipy.stats import chi2

#Question 1a

Pa = 0.1*0.99999 + 0.9*0.00001

print("1a: " + str(Pa))

#Question 1b

Pb = ((0.9)*(0.99999))/((0.1)*(0.00001) + (0.9)*(0.99999))

print("1b: " + str(Pb))

#Question 1c

Pc = ((0.9)*(0.00001))/((0.9)*(0.00001) + (0.1)*(0.99999))

print("1c: " + str(Pc))

#Question 1d

Pda = (0.1)*(0.99999)

print("1ca: " + str(Pda))

Pdb = (0.1)*(0.00001)

print("1cb: " + str(Pdb))

print("1c_Combined: " + str(Pda + Pdb))

####

#Question 2a

y = norm.cdf(100,70,30.1)

print("2a: " + str(y))

y = norm.cdf(110,70,30.1)

print("2b: " + str(1 - y))

def squared(x):

 return x**2

y = norm.expect(lambda x: x**2, loc = 70, scale = 30.1, lb=0, ub=200)

print("2c: " + str(y))

####

#Question 3

1

def DG(x):

 return 0.8*norm.pdf(x, 10, 1) + 0.2*norm.pdf(x, 10, 3)

y = integrate.quad(DG, 8, 1000)

print("3: " + str(y))

####

#Question 4a

G = poisson(6)

expect = G.dist.expect(lambda x: x, G.args, lb=0, ub=np.inf)

print("4a: " + str(expect))

b = poisson.pmf(0, 6)

print("4b: " + str(b))

c = 1 - poisson.cdf(10, 6)

print("4c: " + str(c))

####

#Question 5a

#Each row contains 1 variable from each dimension

x = np.array([[3.1, 200.1, 42.6, 7.9], [10.2, 168.3, 39.2, 9.1], [5.7, 192.3, 23.4,

cov = np.cov(x)

print("5a :")

print(cov)

cor = np.corrcoef(x)

print("5b :")

print(cor)

####

print("")

#Question 6

results = opt.differential_evolution(opt.rosen, bounds = [(-2,2),(-2,2),(-2,2),(-2,2),(-

print("6a: ")

print("Function value: ")

print(opt.rosen(results.x))

print("Parameter values: ")

print(results.x)

results = opt.differential_evolution(opt.rosen, bounds = [(-2,2),(-2,2),(-2,2),(-2,2),(-

2

print("6b: ")

print("Function value: ")

print(opt.rosen(results.x))

print("Parameter values: ")

print(results.x)

####

#Question 7

#Import data

data = pandas.read_csv("data.csv")

#Define background function

def background(myy, A=1):

 a = 15

 b = -1.2

 c = 0.03

 result = A * (c*myy**2 + b*myy + a)

 return result

#Define signal function

def signal(myy, B, mean, sigma):

 result = B*5*norm.pdf(myy, mean, sigma)

 return result

#Define bin locations

x = np.arange(0, 20, 0.01)

#Extract data

lhc_data = np.genfromtxt('data.csv', delimiter = ',')

#Convert data into histogram form and store edge locations

entries, edges, _ = plt.hist(lhc_data, bins = 30, range=[0, 20])

#Calculate bin centers

bin_centers = 0.5 * (edges[:-1] + edges[1:])

#Define minus log likelihood function

def minus_log(params):

 A, B, mu, sigma = params

 result = 0

 entries, edges, _ = plt.hist(lhc_data, bins = 30, range=[0, 20])

 bin_centers = 0.5 * (edges[:-1] + edges[1:])

3

 n = bin_centers.size

 for i in range(0, n):

 b = background(bin_centers[i], A)

 s = signal(bin_centers[i], B, mu, sigma)

 lambda_i = s + b

 k_i = entries[i]

 result += poisson.logpmf(k_i, lambda_i)

 return -1*result

#plt.clf()

#Optimise minus log likelihood

results = opt.differential_evolution(minus_log, bounds = [(160,170),(150,170),(0,5),(0,2

print("7:")

print(results.x)

plt.plot(x, signal(x, results.x[1], results.x[2], results.x[3]))

plt.plot(x, background(x, results.x[0]))

plt.plot(x, background(x, results.x[0]) + signal(x, results.x[1], results.x[2], results.x[

plt.show()

plt.plot(x, signal(x, 163.2, 2.7, 1))

plt.plot(x, background(x, 166.5))

plt.plot(x, background(x, 166.5) + signal(x, 163.2, 4.5, 1))

plt.show()

mrl = opt.differential_evolution(minus_log, bounds = [(160,170),(0,0.01),(0,5),(0,2)])# strategy = 'randtobest1bin', recombination = 0.7)

background_L = minus_log([mrl.x[0],0,mrl.x[2], mrl.x[3]])

new_model_L = minus_log([results.x[0],results.x[1],results.x[2], results.x[3]])

#Assuming wilks theorem, the test statistic

t = -2(ln(background) - ln(new_model))

will have a chi^2 distribution

So, we compare the value of t with the

value of 95% confidence for a chi^2

distribution

t = -2*(-background_L + new_model_L)

print("7b: ")

print("Test statistic is: " + str(t))

4

crit = chi2.ppf(q = 0.95, df = 1)

print("Chi^2 95% value is: " + str(crit))

5

