
Honours General Relativity 2020
Assignment 3

Due date: 13th November 2020 (hand in or email before midnight)
Number of problems: 6 (7 for maths students)

Problem 1

Let S be a generally invariant functional:

S =

∫
d4x
√−g{scalar}

of the spacetime metric gµν and (possibly) matter fields. Consider metric variations δgµν

and infinitesimal general coordinate transformations x→ x′ = x+ ξ(x).

(a) Show that δgµν and ξµ are (2,0) and (1,0) tensor fields, respectively.

(b) Show that (−g)−1/2δS/δgµν defines a (0,2) tensor.

(c) Consider the special class of metric variations induced by an infinitesimal coordinate

transformation. Use the explicit metric connection

{
α
µβ

}
to deduce the relation:

δgµν = −(∇µξν +∇νξµ) (1)

(d) Show that the general invariance of S implies:

∇µ
(

(−g)−1/2
δS

δgµν

)
= 0 (2)

Problem 2
On the surface of a two-sphere S2 of radius a, we have:

ds2 = a2(dθ2 + sin2 θdφ2) (3)

Consider the vector ~A0 = ~eθ at θ = θ0, φ = 0. The vector is parallel transported all the way
around the latitude circle θ = θ0 (i.e. over the range 0 ≤ φ ≤ 2π at θ = θ0). What is the

resulting vector ~A? What is its magnitude?
Hint: Derive differential equations for Aθ and Aφ as functions of φ.

Problem 3

Show that the geodesic equation can be written in the following form:

duα
ds
− 1

2

∂gβγ
∂xα

uβuγ = 0 (4)

Problem 4

(a) The curved surface of a cylinder can be regarded as a rectangle that has two opposite
sides identified with each other, as shown below. The transformation in Figure 1 is
a local isometry between the cylinder and the Euclidean plane, and therefore takes
geodesics on the cylinder to geodesics on the plane (i.e. straight lines).



Figure 1: A cylinder cut along its surface and unrolled into a rectangle. The red sides of
the rectangle are to be regarded as the same line.

(i) Draw two geodesics connecting points A and B in Figure 1.

(ii) Sketch your geodesics on the normal (i.e. “rolled up”) cylinder.

(b) Similarly, a local isometry between a cone (not including the vertex) and the plane
is shown in Figure 2. This case is of physical relevance: hypothetical objects known
as cosmic strings alter the geometry of the cross-sections of space transverse to them
into the geometry of a cone, with the string at the vertex. Surprisingly, under general
relativity a straight cosmic string would not attract static objects gravitationally (the
attraction from its mass is exactly cancelled by the repulsion from its tension), but it
would still be detectable from the gravitational lensing around it.

(i) Suppose there were a cosmic string that gives rise to the geometry shown in
Figure 2. Indicate on the planar cone in Figure 2 the regions of space where you
would see only one image of a distant galaxy in this plane, and where you would
see multiple images of the galaxy. Remember light rays follow geodesics. Hint:
without loss of generality, take the distant galaxy to be on the red line.

(ii) If the geometry were instead as in Figure 3, how many images of the galaxy would
you see if you were at point X? Hint: “glue” multiple copies of the cone together,
using the fact that the red lines represent the same points. Straight lines that
cross multiple copies of the cone are still geodesics.

Figure 2: A cone cut along its surface and flattened into a planar shape. The red sides of
the shape are to be regarded as the same line.

Figure 3: A planar representation of a cone with a deficit angle θ = 4π/3, containing a single
galaxy.



Problem 5

In lectures, we explored the trajectories of massive particles in the Schwarzschild geom-
etry. Now imagine that we have a photon orbiting a spherical massive body where the
Schwarzschild solution applies. Assume, for convenience, that the orbit lies in the plane
θ = π/2.

(a) Starting from the geodesic equations, show that we can write:

Ē2 =
1

c2

(
dr

dλ

)2

+
J̄2

c2r2

(
1− 2GM

c2r

)
(5)

where Ē and J̄ are constants of the motion and λ is an affine parameter.

(b) Show that there is only one possible circular orbit for a photon, with radius r =
3GM/c2.

(c) Show whether the orbit obtained in part (b) is stable or unstable.

(d) For an observer at a radius of r = 3GM/c2, what is the proper time required for the
photon to complete one revolution of the circular orbit?

(e) What is the orbital period measured by a distant observer?

Problem 6

Assume (and don’t try to prove) that the invariant interval for every two-dimensional space-
time can be expressed in conformal coordinates:

ds2 = e2φ(dx2 − dt2) where φ = φ(x, t) (6)

Calculate the Riemann curvature tensor component Rtxtx, and write out the 2-dimensional
Einstein vacuum equations Rij = 0. What is their general solution?

Problem 7

Only do this question if you are a maths student outside of the physics honours stream. You
have been warned!

(a) Show that, in two spacetime dimensions (D = 1+1), the LHS of the Einstein equation:

Rµν −
1

2
gµνR = 8πGTµν

vanishes identically. Don’t assume Equation (6).

Hint: You will need to look up the 2D form of the Riemann tensor.

(b) Is general relativity possible in a world with D = 1 + 1?
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Problem I

part a

The equation (xµ)′ = (xµ)+ε(xµ) maps from a position within one reference,
)xµ), to a position infinitely close to that position, (xµ)′. Consider this same
mapping, (xµ) → (xµ)′, from the perspective of an observer in an alternate
frame of reference. This observer sees the positions in the original frame
Lorenz transformed so (xµ) → (xµ

′
), (xµ)′ → (xµ

′
)′. Note the use of the

prime marker to label both frame and coordinate changes, dependent upon
its position. The original coordinate deformation is then

(xµ
′
)′ = (xµ

′
) + ε′(x)

where ε′ is the infinitesimal position update quantity which follows a yet
unknown transformation law. Expressing the lorentz property of the new
coordinate variables gives

(
∂xµ

∂xµ′
xµ)′ = (

∂xµ

∂xµ′
xµ) + ε′(x)

Rearranging gives

∂xµ

∂xµ′
((xµ)′ − (xµ)) = ε′(x)
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∂xµ

∂xµ′
(ε(x)) = ε′(x)

And so ε(x) obeys the transformation law of a rank 1, (1,0) tensor.

Proceed for the metric case in the same manner by considering an infinitesi-
mal shift in an unprimed frame

(gµν)′ = gµν + δgµν

and a primed frame

(gµ
′ν′)′ = gµ

′ν′ + δgµ
′ν′

Expressing the metric transformation property explicitly gives

∂xµ

∂xµ′
∂xν

∂xν′
(gµν)′ =

∂xµ

∂xµ′
∂xν

∂xν′
(gµν) + δgµ

′ν′

∂xµ

∂xµ′
∂xν

∂xν′
((gµν)′ − gµν) = δgµ

′ν′

∂xµ

∂xµ′
∂xν

∂xν′
(δgµν) = δgµ

′ν′

So we see δgµν obeys the required law of a rank 2, (2,0) tensor.

part b

In lectures we showed that metric variation of
√−g obeys the relation

δ
√−g =

−1

2

√−ggµνδgµν

Indeed, such an identity is required to preserve the general invariance of S.
From this identity it follows that varying the action provided with respect to
gµν has the effect

δS =
−1

2

∫
d4x
√−g(scalar)(

√−ggµν)δgµν

Which leads to
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(
√−g)

−1
2 δS =

−1

2

∫
d4x
√−g(scalar)(

√−ggµν)(
√−g)

−1
2 δgµν

(
√−g)

−1
2 δS =

−1

2

∫
d4x
√−g(scalar)(gµν)δg

µν

(
√−g)

−1
2
δS

δgµν
=
−1

2

∫
d4x
√−g(scalar)(gµν)

Thus (−g)−1/2δSδgµν obeys the same transformation law as gµν - that of a
rank 2, (0,2) tensor.

part c

Consider expanding the∇ explicitly in the expression for∇aεb. This provides

∇aεb = ∂aεb − Γcabεc

= ∂aεb −
1

2
gcd(∂agbd + ∂bgda − ∂dgab)εc

Taking the sum of ∇aεb and ∇bεa then gives

∇aεb+∇bεa = ∂aεb+∂bεa−
1

2
gcd(∂agbd+∂bgda−∂dgab)εc−

1

2
gcd(∂bgad+∂agdb−∂dgba)εc

The metric has the property that gab = −gba. If we make use of this rela-
tion we notice all terms provided by the connection are the negatives of one
another. Thus, removing these canceling terms provides

∇aεb +∇bεa = ∂aεb + ∂bεa

Which, making the identification that the metric provides the variation of
coordinates with respect to all other coordinates in the current frame, we
may make the identification

gab = −(∂axb + ∂bxa)

Considering the infinitesimal case
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δgab = −(∂aεb + ∂bεa)

And so

δgab = −(∇aεb +∇bεa)

As required.

part d

The action, S, is invariant under a change of frame. As shown in part C,
the quantity δgµν may be expressed as derivatives of infinitesimal coordinate
deformations. As S is invariant under such deformations, the quantity

δS

δgµν

vanishes. Thus we have

∇µ

(
(−g)−1/2

δS

δgµν

)
= ∇µ

(
(−g)−1/20

)
= 0

As required.

Problem II

The tensor equation for parallel transport is

Ua∇aVb

In our two dimensional spacetime this may be written as two equations

(U0∇0 + U1∇1)V0 = 0

(U0∇0 + U1∇1)V1 = 0

The quantity U represents variation of the spacetime coordinates along our
path. We are given that θ is held constant, implying the only coordinate
change occurs in the variable φ. As such it makes sense to parametrise our
spacetime path using the variable φ. Resulting from this

7



U0 =
dθ

dφ
= 0

U1 =
dφ

dφ
= 1

Parallel transport is therefore specified by the conditions

∇1V0 = 0

∇1V1 = 0

Expanding the covariant derivative

d

dφ
V1 = Γ1

21V1 + Γ2
21V2

d

dφ
V2 = Γ1

22V1 + Γ2
22V2

Using the provided line element and the unitary condition of the multiplica-
tion of two metrics we deduce the tensor elements

gµν =

[
a2 0
0 a2 sin2 θ

]

gµν =

[
a−2 0
0 a−2(sin θ)−1

]

We may use the explicit relation for the connection coefficients in unison with
the metric identities to write

Γabc =
1

2
gad(∂bgdc + ∂cgbd − ∂dgbc)

Making use of the fact all off diagonal elements of the metric vanish to sim-
plify our algebra, we have

Γ1
21 =

1

2
a−2(∂φa

2)

Γ2
21 =

1

2
a−2(sin θ)−1(∂θa

2 sin2 θ)

=
1

2
(sin θ)−1(2 sin θ cos θ)
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=
cos θ

sin θ

= (tan θ)−1

Γ1
22 =

1

2
a−2(−∂θa2 sin2 θ)

= −1

2
(a22 sin θ cos θ)

= −(sin θ cos θ)

Γ2
22 =

1

2
a−2(sin θ)−1(∂φg22 + ∂φg22 − ∂φg22)

= 0

We have now arrived at two differential equations describing how a tensor V
changes during the process of parallel transport. In full, these equations are

∂φV1 = (tan θ)−1V2

∂φV2 = −(sin θ cos θ)V1

To solve for V , first take second derivatives

∂2

∂φ2
V1 = (tan θ)−1∂φV2

= −cos θ

sin θ
sin θ cos θV2

= (cos θ)2V2

By inspection we see a solution to this equation is

V1 = A expi(cos θ)φ +B exp−i(cos θ)φ

Repeating the derivation for the second parallel transport equation recovers

V2 = C expi(cos θ)φ +D exp−i(cos θ)φ
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Due to the coupling of our equations, the model parameters are reduced by
2 as

∂φV1 = −(tan θ)−1V2

cos θ(A expi(cos θ)φ−B exp−i(cos θ)φ) =
cos θ

sin θ
(C expi(cos θ)φ +D exp−i(cos θ)φ)

(sin θA expi(cos θ)φ− sin θB exp−i(cos θ)φ) = (C expi(cos θ)φ +D exp−i(cos θ)φ)

Equating coefficients reveals

C = (sin θ)A

D = −(sin θ)B

Which allows us to write

V2 = (sin θ)A expi(cos θ)φ−(sin θ)B exp−i(cos θ)φ

As a check for consistency observe our original differential equations coupling
the elements of V are obeyed by the above identities. The initial conditions
we are provided are φi = 0 and θi = θ0. Substitution into our vector identities
leads to

V i
1 = θ0 = A+B

V i
2 = 0 = A sin θ0 −B cos θ0

Simultaneous solutions of the above provide

A = B =
θ0
2

The imposed constraints lead our particular solutions to be

V1 =
θ0
2

expi(cos θ)φ +
θ0
2

exp−i(cos θ)φ

V2 = (sin θ)
θ0
2

expi(cos θ)φ−(sin θ)
θ0
2

exp−i(cos θ)φ
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Equivalently using trigonometric identities

V1 =
θ0
2

sin((cos θ)φ) +
θ0
2

cos((cos θ)φ)

V2 = (sin θ)
θ0
2

sin((cos θ)φ)− (sin θ)
θ0
2

cos((cos θ)φ)

After transporting the vector from φ = 0 to φ = 2π the value of V is given
by the above equations with θ = θ0 and φ = 2π. The length is given by

VaV
a = V agabV

b

Which, in matrix notation, is equivalent to

V TgV = a2V 2
1 + a2 sin2 θV 2

2

Substituting our identities for V1 and V2 provides

θ20
4
a2(s2 + c2 + 2sc) +

θ20
4
a2 sin4 θ0(s

2 + c2 − 2sc)

Where we have made the helpful substitution

s = sin(cos(θ0)φ)

c = cos(cos(θ0)φ)

Continuing the expansion provides

θ20
4
a2(1 + 2sc) +

θ20
4
a2 sin4 θ0(1− 2sc)

=
θ20
4
a2(1 + 2sc+ sin4 θ0 − 2sc sin4 θ0)

Replacing our adopted shorthand with their original forms and specifying
φ = 2π gives the final result

=
θ20
4
a2(1 + 2 sin(cos(θ0)2π) cos(cos(θ0)2π) + sin4 θ0

−2 sin(cos(θ0)2π) cos(cos(θ0)2π) sin4 θ0)
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The process of parallel transport acts to move a tensor along a space-time
manifold whilst keeping its original length intact. This is achieved by com-
pensating for the coordinate deformation with the metric connection. By
this logic, the length derived above should be equal to the original length.
As this is not so, there must be an error somewhere in the derivation.

Problem III

The geodesic equation is

d2xµ

dτ 2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0

Expressing the Christoffel symbol explicitly in the Geodesic equation, assum-
ing an affine parametrisation of space-time curves, gives

d2xµ

dτ 2
+

1

2
gµa(∂αgβa + ∂βgaα − ∂agαβ)

dxα

dτ

dxβ

dτ
= 0

Continuing the expansion and making use of the relation ∂
∂xε

dxε

dτ
= ∂

∂τ
gives

d

dτ

dxµ

dτ
+

1

2
gµa

∂

∂τ
gβa

dxβ

dτ
+

1

2
gµa

∂

∂τ
gaα

dxα

dτ
− 1

2
gµa

∂

∂xa
gαβ

dxα

dτ

dxβ

dτ

Premultiplying by gδµ provides

d

dτ

dxµ

dτ
+

1

2
δaδ
∂

∂τ
gβa

dxβ

dτ
+

1

2
δaδ
∂

∂τ
gaα

dxα

dτ
− 1

2
δaδ

∂

∂xa
gαβ

dxα

dτ

dxβ

dτ

=
d

dτ

dxµ

dτ
+

1

2

∂

∂τ
gβδ

dxβ

dτ
+

1

2

∂

∂τ
gδα

dxα

dτ
− 1

2

∂

∂xδ
gαβ

dxα

dτ

dxβ

dτ

Identifying the four velocity as d
dτ

dxµ

dτ
= d

dτ
uα gives

d

dτ
uα −

1

2

∂

∂xδ
gαβu

βuα +
1

2
(
∂

∂τ
gβδ

dxβ

dτ
+

∂

∂τ
gδα

dxα

dτ
)

The symmetric property of the metric tensor provides gαβ = −gβα so we have

duα
dτ
− 1

2

∂

∂xδ
gαβu

βuα = 0

Which is the result we desire.
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Problem IV

Part (a)

i

13



ii
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Part (b)

i

A galaxy laying along the lines marking the incision of the circle (lines L1
and L2 in the provided schematic) will emit light rays in all directions. For
the galaxy on line L1, this image will be visible in the region I1 = A ∪ B.
Similarly the same effect occurs for the galaxy when taken to be on line L2.
In this case the image is visible in section I2 = A ∪ C. The region providing
multiple images is then the intersection of regions I1 and I2

I1 ∩ I2 = A

ii

In this geometry, the position of the galaxies means that geodesics drawn
from them will reach every point on the planar surface. As a result, there
are 3 images of the galaxy visible at point X, as labeled on the provided
diagram. Images incident to points Y and Z arrive at equivalent angles to
those at position X and as such are taken to be the same image and not
additional images.
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Problem V

The first integral of the Geodesic equation is

gµνdẋ
µdẋν = L

For a photon, this must correspond to a light-like world line, thus

L = 0

Identifying L as the lagrangin and writing explicitly for a schwarzchild ge-
ometry gives

L = c2
(

1− 2µ

r

)
ṫ2 −

(
1− 2µ

r

)−1
ṙ2 − r2

(
θ̇2 + sin2θφ̇2

)
= 0

Assuming the particle to be confined to the θ = π
2

plane

L = c2
(

1− 2µ

r

)
ṫ2 −

(
1− 2µ

r

)−1
ṙ2 − r2φ̇2 = 0

We know (from lectures) that two solutions of the geodesic equation for a
general worldline in a schwarzchild geometry are

(
1− 2µ

r

)
ṫ = k

r2φ̇ = h

Simplifying our lagrangian to
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L = c2
(

1− 2µ

r

)−1
k2 −

(
1− 2µ

r

)−1
ṙ2 − h2

r2
= 0

Rearranging for k2 gives

c2k2 = ṙ2 +
h2

r2

(
1− 2GM

c2r

)

Noting the use of the relation µ = GM
c2

. Further, we may write

k2 =
1

c2

(
dr

dλ

)2

+
h2

c2r2

(
1− 2GM

c2r

)

Using the identity
(
dr
dλ

)
= ṙ for a suitable affine parameter λ. We then

identify k2 = Ē2 and h2 = J̄2 as the constants of motion referenced in the
assignment sheet.

b

Begin with h = r2φ̇ to write

dr

dλ
=
dr

dφ

dφ

dλ
=

h

r2
dr

dφ

Now substitute into our energy equation found in (a) to achieve

c2k2 =

(
h

r2
dr

dφ

)2

+
h2

r2
− 2µh2

r3

Now, allow the mapping 1
r
→ u which provides

c2k2 =

(
hu2

dr

dφ

)2

+ h2u2 − 2µh2u3

Making use of

dr

dφ
=

d

dφ

(
1

u

)
= −u−2 du

dφ

we may write

c2k2 = h2
(
du

dφ

)2

+ h2u2 − 2µh2u3
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Differentiating with respect to φ and dividing by h2 gives

0 =
d2u

dφ2
+ u− 3µu2

Considering circular orbits, we know that u = 1
r

does not change thus all
derivatives of u vanish which leads us to

u = 3µu2

Which has one non-trivial solution

1

u
= r = 3µ

Identifying µ = GM
c2

gives our desired result

r =
3GM

c2

part c

The Newtonian energy equation for a photon in an orbit is

E =
1

2

(
dr

dt

)2

+ Veff (r)

Comparing this with our energy equation derived in (a) we can identify 1
2
k2c2

as the energy and the effective potential as being

veff (r) =
1

2

(
h

r

)2

−
(
h

r

)2
µ

r

Stable and unstable orbits correspond to extrema of the effective potential.
We may find such points by considering derivatives with respect to the co-
ordinate r

dveff (r)

dr
= 3h2µr−4 − h2r−3

Setting this to zero for the case of extrema and solving provides

3µr−4 − r−3 = 0
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3µ− r = 0

r =
3GM

c2

So we see there is only one extremum. Note that this matches the result
found in part (a) which provides confidence we are on the right path.

Taking a second derivative to assess stability gives

d

dr

(
µr−4 − r−3

)
= 0

−12µr−5 + 3r−4 = 0

Multiplying through by r and solving gives

r = 4µ

This is the turning point of the second derivative. If r is greater than this
value then the second derivative will be positive, corresponding to a stable
orbit. In our case we have

rcircle = 2µ

rturn = 4µ

Thus

rcircle < rturn

And the orbit is unstable.

part d

Consider using the product rule

dφ

dt
=

(
dλ

dt

dφ

dλ

)

Where λ is the affine parameter used thus far. Using the general solutions of
the Schwarzchild Geodesic equations provided previously, we then have
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dφ

dt
=

(
1− 2µ

r

)
k−1

h

r2

Now consider another previously derived result

c2k2

h2
=

(
du

dφ

)2

+ u2 − 3µu3

Fixing u to be constant gives

c2k2

h2
= u2 (1− 3µu)

In terms of r

c2k2

h2
=

1

r2

(
1− 3µ

r

)

And so the ration k
h

is given by

k

h
=

1

cr

(
1− 3µ

r

) 1
2

Combining this with our orbital period equation produces the relation

dφ

dt
=

(
1− 2µ

r

)
k−1

h

r2

=

(
1− 2µ

r

)
1

r2
cr

(
1− 3µ

r

)−1
2

=
c

r

(
1− 2µ

r

)
(
1− 3µ

r

) 1
2

For an observer at a position of r0 = 3µ we may substitute r0 into the above
expression to find the observed orbital period. In doing so we have the result

dφ

dt
→∞

Which implies one orbit is completed instantaneously. This seems problem-
atic yet such results are often unintuitive in GR.
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part e

Continuing our working in part d, we may find the orbital velocity of an
observer positioned infinitely far from the mass by considering our equation
in the regime r →∞. In doing so we have the result

dφ

dt
→ 0

Which corresponds to an infinitely long orbital period. This also appears to
imply the photon is observed to have an angular velocity of 0 which again
seems problematic, but by the above reasoning, may be a counter intuitive
occurrence caused by GR.

Problem VI

The definition of the Riemann tensor provides

Rtxtx =
1

2
(∂x∂tgxt − ∂x∂xgtt + ∂t∂xgtx − ∂t∂tgxx)− gef (ΓettΓfxx − ΓetxΓfxt)

To find the value of the metric tensor recall the relation

ds2 = dxµdxνgµν

Which, in our case, is given by

e2φdx2 − e2φdt2

Providing a metric

gµν =

[
e2φ 0
0 −e2φ

]

The partial derivative term of the Riemann curvature tensor is then

1

2
(−∂x∂x(−e2φ)− ∂t∂t(e2φ))

= e2φ(∂2xφ+ 2(∂xφ)2 − 2(∂tφ)2 − ∂2t φ
The connection coefficients we require are
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Γabc =
1

2
(∂bgac + ∂cgba − ∂agbc)

Which in our two dimensional spacetime are

Γxxx =
1

2
(∂xgxx) = φxe

2φ

Γxxt =
1

2
(∂tgxx) = φte

2φ

Γxtx =
1

2
(∂tgxx) = φte

2φ

Γtxx =
1

2
(−∂tgxx) = −φxe2φ

Noticing the metric tensor property gxx = −gtt allows us to multiply the
above expressions by -1, while interchanging x and t, to obtain the alternate
coordinate connection coefficients

Γttt = −φte2φ

Γttx = −φxe2φ

Γtxt = −φxe2φ

Γxtt = φxe
2φ

Recalling the product of two metrics must recover the identity matrix, we
have the identity for the contravariant metric

gef =

[
e−2φ 0

0 −e−2φ
]

So the connection term of the curvature tensor is then

gxx(ΓxttΓxxx−ΓxtxΓxxt)+g
xt(ΓxttΓtxx−ΓxtxΓxt)+g

tx(ΓtttΓxxx−ΓttxΓxxt)+g
tt(ΓtttΓtxx−ΓttxΓtxt)
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= gxx(ΓxttΓxxx − ΓxtxΓxxt) + gtt(ΓtttΓtxx − ΓttxΓtxt)

= e−2φ(φxe
2φφxe

2φ − φte2φφte2φ)− e−2φ(φte
2φφte

2φ − φxe2φφxe2φ)

2e2φ(φ2
x − φ2

t )

We can now combine all our working to arrive at a single expression for the
Riemann curvature tensor in our two dimensional spacetime.

Rtxtx = e2φ
[
∂2xφ− ∂2t φ+ 2(∂xφ)2 − 2(∂tφ)2 + 2(∂tφ)2 − 2(∂xφ)2

]

= e2φ
[
∂2xφ− ∂2t φ

]

The Einstein field equations in a vacuum are given by the condition Rab = 0.
This tensor may alternatively be written as

Rab = gceReabc = −gceRaebc

This gives us 4 possible elements. The first four quantities we will need to
evaluate these elements are

Rxtxt, Rttxt, Rxttt, Rtttt,

The final 3 quantities are zero by the symmetry properties of the Riemann
tensor as

Rtttt = −Rtttt

Rxttt = −Rxttt

Rttxt = −Rttxt

We also need expressions for

Rtxtx, Rxxtx, Rtxxx, Rxxxx,
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Again, the final three of which are zero by symmetry. Consider using the
curvature tensor property

Rabcd = −Rabdc, Rabcd = −Rbacd

twice in succession which gives

Rabcd = Rbadc

and thus

Rtxtx = Rxtxt

These results show the only non-trivial equation we must consider involves
our previously calculated Riemann tensor element. This equation, in a vac-
uum, is

Rxx = gttRxtxt = −e2φe2φ
[
∂2xφ− ∂2t φ

]
= 0

∂2xφ = ∂2t φ

By inspection, the general solution to this equation is

φ = Aek(x+t) +Be−k(x+t)

where the constant k may very well be complex. Indeed, if it is, the result is
far more well behaved.
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