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Question 1

Part a

The directional derivative gives the rate of change of a function f along a
curve Ci. In three dimensional cartesian coordinates this is given by

df

dt
=
dx

dt

df

dx
+
dy

dt

df

dy
+
dz

dt

df

dz

For curve C1

dx

dt
= 0,

dy

dt
= 1,

dz

dt
= 1

df

dx
= 2xz,

df

dy
= 2yz,

df

dz
= x2 + y2

So the directional derivative is

v1 = 2yz + x2 + y2

Evaluated at the point p

v1(p) = 1

For curve C2
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dx

dt
= −sinh(t),

dy

dt
= cosh(t),

dz

dt
= 1 + 2t

df

dx
= 2xz,

df

dy
= 2yz,

df

dz
= x2 + y2

So the directional derivative is

v1 = −2xzsinh(t) + 2yzcosh(t) + x2 + 2tx2 + 2ty2 + y2

Using the definition of the first curve

C1(t) = (x, y, z) = (1, t, t)

We see the point p = (1, 0, 0) corresponds to a t value of 0. The directional
derivative of C2 evaluated at p is then

v1(p) = 1

Part b

We wish to find the tangent vectors in the coordinate basis

(∂x, ∂y, ∂z)

This is the rate of change of x, y and z along each point in the curve nor-
malized to unit length. This may be written

(
∂xc
∂t

,
∂yc
∂t
,
∂zc
∂t

)

For curve coordinates (xc, yc, zc). Using the results from part a for C1 this
gives

(
∂xc
∂t

,
∂yc
∂t
,
∂zc
∂t

) = (0, 1, 1)

Normalizing to unit length we have

v =
1√
2

(0, 1, 1)

To recover the original length of the vector find the length in cartesians
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√(
∂xc
∂t

)2

+

(
∂yc
∂t

)2

+

(
∂zc
∂t

)2

=
√

1 + 1 =
√

2

And so the equivalent length vector in the derivative basis is

D = (
√

2,
√

2,
√

2)

Interestingly, though the first element of this vector is
√

2, because the deriva-
tive in this direction is zero, the total length is preserved

1√
2

=

√
(D1∂x)

2 + (D1∂y)
2 + (D1∂z)

2 =

√(√
2

1√
2

)2

+

(√
2

1√
2

)2

=
√

2

As the tangent vector to the curve C2 at the point p is the same as C1 and
the curve derivatives (∂x, ∂y, ∂z) are also equal, the resulting vector in the
derivative basis is equivalent to the C1 case.

Question 2

Part a

Begin by writing our equation in matrix notation

f =
[
x y

] [2 1
1 2

] [
x
y

]
A rotation results from [

x
y

]
=

[
cosθ sinθ
−sinθ cosθ

] [
x′

y′

]
Replacing x and y in our original equation by the rotated equivalent and
simplifying via MATLAB we achieve

[
x′ y′

] [2− sin(2T ) cos(2T )
cos(2T ) sin(2T ) + 2

] [
x′

y′

]

2x′2 − sin(2T )x′2 + cos(2T )y′x′ + cos(2T )y′x′ + y′2sin(2T ) + 2y′2
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Choosing T = π
4

2x′2 − x′2 + y′2 + 2y′2

= x′2 + 3y′2 = 1

As required

Part b

The components of the tangent vector (∂x, ∂y) are

dx

dψ
=

1√
2

(
−sinψ +

1√
3
cosψ

)
dy

dψ
=

1√
2

(
sinψ +

1√
3
cosψ

)
Now for v(f) = v(xy)

dx

dψ

d

dx
(xy) +

dy

dψ

d

dy
(xy)

=
1√
2

(
−sinψ +

1√
3
cosψ

)
1√
2

(
−cosψ +

1√
3
sinψ

)

+
1√
2

(
sinψ +

1√
3
cosψ

)
1√
2

(
cosψ +

1√
3
sinψ

)

=
1

2

(
sinψcosψ +

1

3
cosψsinψ − 1√

3
sin2ψ − 1√

3cos2ψ

)

+
1

2

(
sinψcosψ +

1

3
cosψsinψ +

1√
3
sin2ψ +

1√
3cos2ψ

)
=

4

3
sinψcosψ

Now consider expanding

2√
3

(x2 − y2)
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To get

2√
3

((
1√
2
cosψ +

1√
6
sinψ

)2

−
(
− 1√

2
cosψ +

1√
6
sinψ

)2
)

=
2√
3

(
1

2
cos2ψ +

1

6
sin2ψ +

2√
12
sinψcosψ

−1

2
cos2ψ − 1

6
sin2ψ +

2√
12
sinψcosψ)

=
2√
3

(
4√
12
sinψcosψ

)
=

4

3
cosψsinψ

We see the result is equivalent to that derived above and so v(xy) is indeed
2√
3
(x2 − y2)

Question 3

0.1 Part a

Looking at diagram (a) we see two similar triangles which give rise to the
relation

Sy
Sx

=
Py
Px

Using Cartesian coordinates

Sy = 1− x3, Sx = x2

Py = 2, Px = y1

So by similar triangles

1− x3
x2

=
2

y1
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Figure 1: Diagram (a)

2x2 =
y1

1− x3

y1 =
2x2

1− x3
By rotational symmetry about the x3 axis

y2 =
2x1

1− x3
Providing

(y1, y2) =

(
2x2

1− x3
,

2x1
1− x3

)

Part b

The answer is found in the same manner as part a except now x3 moves
above the lower (x1, x2) plane and so we have the mapping
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1− x3 → 1 + x3

Which yields

(z1, z2) =

(
2x2

1 + x3
,

2x1
1 + x3

)

Question 4

We wish to evaluate

Γλ
′

µ′ν′ =
1

2
gλ

′ρ′ (∂µ′gν′ρ′ + ∂ν′gρ′µ′ − ∂ρ′gµ′ν′)

First evaluate the bracketed term

∂µ′gν′ρ′ + ∂ν′gρ′µ′ − ∂ρ′gµ′ν′

=
∂xµ

∂xµ′
∂xν

′

∂xν′
∂xρ

∂xρ′
+ gνρ

(
∂xρ

∂xρ
∂2xν

∂xµ′∂xν′
+
∂xρ

∂xν′
∂2xν

∂xµ′∂xρ′

)

+
∂xν

∂xν′
∂xρ

∂xρ′
∂xµ

∂xµ′
∂νgρµ + gρµ

(
∂xµ

∂xµ′
∂2xρ

∂xν′∂xρ′
+
∂xµ

∂xρ′
∂2xρ

∂xν′∂xµ′

)

− ∂x
ρ

∂xρ′
∂xµ

∂xµ′
∂xν

∂xν′
∂ρgµν − gµν

(
∂xν

∂xν′
∂2xµ

∂xρ′∂xν′
+
∂xν

∂xµ′
∂2xµ

∂xρ′∂xν′

)
Using the symmetry of g and exchanging indices

∂xµ

∂xµ′
∂xν

∂xν′
∂xρ

∂xρ′
(∂µgνρ + ∂νgρµ − ∂ρgµν) + gνρ(

∂xρ

∂xρ′
∂2xν

∂xµ′∂xν′

+
∂xρ

∂xν′
∂2xν

∂xµ′∂xρ′
+
∂xρ

∂xµ′
∂2xν

∂xν′∂xρ′
+
∂xρ

∂xρ′
∂2xν

∂xν′∂xµ′
− ∂x

ρ

∂xν′
∂2xν

∂xρ′∂xµ′
− ∂x

ρ

∂xµ′
∂2xν

∂xρ′∂xν′

Collecting like terms

∂xµ

∂xµ′
∂xν

∂xν′
∂xρ

∂xρ′
(∂µgνρ + ∂νgρµ − ∂ρgµν) + 2gνρ

∂xρ

∂xρ′
∂2xν

∂xµ′∂xν′
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making the total expression for Γ

1

2
(
∂xλ

′

∂xλ
∂xρ

′

∂xβ
gλβ)(

∂xµ

∂xµ′
∂xν

∂xν′
∂xρ

∂xρ′
(∂µgνρ + ∂νgρµ − ∂ρgµν) + 2gνρ

∂xρ

∂xρ′
∂2xν

∂xµ′∂xν′
)

=
1

2
gλβδρβ

∂xλ
′

∂xλ
∂xµ

∂xµ′
∂xν

∂xν′
(∂µgνρ + ∂νgρµ − ∂ρgµν) + gνρg

λβδρβ
∂xλ

′

∂xλ
∂2xν

∂xµ′∂xν′
)

=
∂xλ

′

∂xλ
∂xµ

∂xµ′
∂xν

∂xν′
1

2
gλρ(∂µgνρ + ∂νgρµ − ∂ρgµν) +

∂xλ
′

∂xλ
∂2xλ

∂xµ′∂xν′
)

Which is the transformation law obeyed by an affine connection as required.

Question 5

Part a

Perpendicularity is given by the condition

V aWa = 0

Contracting four velocity and acceleration yields

Ua

(
−1

c2
∂aφ−

1

c2
Ua∂

bφUb

)
=
−1

c2
Ua∂aφ−

1

c2
UaUa∂

bφUb

Since UaUa = −1

=
−1

c2
Ua∂aφ+

1

c2
∂bφUb

= 0

So the vectors are perpendicular.

8



Part b

Removing the right hand side term

UaA′a = Ua

(
−1

c2
∂aφ

)
=
−1

c2
Ua∂aφ

For this to be zero we require

−1

c2
Ua∂aφ = 0

U0∂0φ+ U i∂iφ = 0

1

c

∂

∂t
φ = −v

i

c
∇iφ

which is satisfied in a number of cases. One being a time invariant potential
∂
∂t
φ = 0 in which the particle always moves along an equipotential trajectory

vi∇iφ = 0.

Part c

We find a solution by considering the chain rule and using the provided
definitions in the assignment sheet

dU i

ds
=

1

c

d(γvi)

ds
=
γ

c

dv

ds
+
vi

c

dγ

ds

dU i

ds
=
γ

c

dt

ds

dvi

dt
+
vi

c

dt

ds

dγ

dt

Because c dt
ds

= γ we have dt
ds

= γ
c

dU i

ds
=
γ2

c2
dv

dt
+
viγ

c2
dγ

dt

We will need the quantity dγ
dt

which is found by considering the zero compo-
nent of dUmu

ds
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dU0

ds
=
dt

ds

dU0

dt

dU0

ds
=
−1

c2
(∂0φ+ U0∇iU

i)

=
−1

c2
(0 + γGM

γvir̂i
r2c

)

=
−γ
c2
GM

ˆriγvi
r2c

=
−γ2

c3
GMvi
r2

r̂i

Recalling that dt
ds

= γ
c

we have

dγ

dt
= − γ

c2
GMr̂iv

i

r2

And so

dU i

ds
=
γ2

c2
dvi

dt
− viγ

c2
γ

c2
GMr̂ivi

r2

The vector vi points in the direction of r̂i so may be written vr̂i giving

=
γ2

c2
dvi

dt
− γ4

c4
GMv2r̂i

r2

Equating dU i

ds
we need the quantity ∂iφ

∂iφ =
∂

∂xi

(
−GM

(x21 + x22 + x23)
1
2

)

= GM
1

r3
ri = GMr̂i

1

r2

Which gives

dU i

ds
=
−1

c2

(
GMr̂i

r2
+
γ2GMv2r̂i

c2r2

)
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So

−1

c2

(
GMr̂i

r2
+
γ2GMv2r̂i

c2r2

)
=
γ2

c2

(
dvi

dt
− GMv2r̂i

c2r2

)

−1

γ2

(
GMr̂i

r2
+
γ2GMv2r̂i

c2r2

)
=
γ2

c2

(
dvi

dt
− GMv2r̂i

c2r2

)

−1

γ2

(
GMr̂i

r2
+
γ2GMv2r̂i

c2r2

)
=
dvi

dt
− GMv2r̂i

c2r2

dvi

dt
=
GMr̂i

γ2r2
− GMv2r̂i

r2c2
+
GMv2r̂i

r2c2

=
GMr̂i

γ2r2

= −GM
r2

r̂i
(

1− v2

c2

)
As required

Question 6

Part a

Expanding the metric on the paraboloid

ds2 = Adu2 +Bdudφ+ Cdφ2

And evaluating the coefficients

A =

((
∂x

∂u

)2

+

(
∂y

∂u

)2

+

(
∂z

∂u

)2
)

= cos2φ+ sin2φ+ u2

= 1 + u2
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B =
∂x

∂u

∂x

∂φ
+
∂y

∂u

∂y

∂φ
+
∂z

∂u

∂z

∂φ

= −cosφsinφu+ sinφcosφu+ 0

= 0

C =

((
∂x

∂φ

)2

+

(
∂y

∂φ

)2

+

(
∂z

∂φ

)2
)

= u2sin2φ+ u2cos2φ+ 0

= u2

Giving a metric

ds2 = (1 + u2)du2 + u2dφ2

Part b

Christoffel Symbols are given by

Γacb =
1

2
gad (gbd,c + gcd,b + gcb,d)

We know the quantity gµν obeys the relation

ds2 = dxµgµνdx
ν

From part (a) this gives us

dxµgµνdx
ν = (1 + u2)du2 + u2dφ2

Meaning gµν is

gµν =

[
1 + u2 0

0 u2

]
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The action of two g matrices on a quantity result in the original quantity and
thus the value of the contravariant g must be such that, when multiplied by
the covariant g, recovers the identity. This is satisfied by

gµν =

[
1

1+u2
0

0 1
u2

]
We find our Christoffel symbols to be

Γ1
11 =

1

2
g11
(
∂

∂u
g11 +

∂

∂u
g11 −

∂

∂u
g11

)
=

1

2

1

1 + u2
(2u) =

u

1 + u2

Γ1
12 =

1

2
g11
(
∂

∂φ
g11 +

∂

∂u
g21 −

∂

∂u
g21

)
=

1

2

1

1 + u2
(0 + 0 + 0) = 0

Γ1
21 =

1

2
g11
(
∂

∂u
g21 +

∂

∂φ
g11 −

∂

∂u
g12

)
=

1

2

1

1 + u2
(0 + 0 + 0) = 0

Γ1
22 =

1

2
g11
(
∂

∂φ
g21 +

∂

∂φ
g21 −

∂

∂u
g22

)
=

1

2

1

1 + u2
(−2u) =

−u
1 + u2

Γ2
11 =

1

2
g22
(
∂

∂u
g12 +

∂

∂u
g12 −

∂

∂φ
g11

)
=

1

2

1

u2
(0 + 0 + 0) = 0

Γ2
12 =

1

2
g22
(
∂

∂φ
g12 +

∂

∂u
g22 −

∂

∂φ
g21

)
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=
1

2

1

u2
(0 + 2u+ 0) =

1

u

Γ2
21 =

1

2
g22
(
∂

∂u
g22 +

∂

∂φ
g12 −

∂

∂φ
g12

)
=

1

2

1

u2
(2u+ 0 + 0) =

1

u

Γ2
22 =

1

2
g22
(
∂

∂φ
g22 +

∂

∂φ
g22 −

∂

∂φ
g22

)
=

1

2

1

u2
(0 + 0 + 0) = 0

Giving the non-zero symbols to be

Γ1
11 =

u

1 + u2
,Γ1

22 =
−u

1 + u2
,Γ2

12 = Γ2
21 =

1

u

Part c

Writing the condition for parallel transport in explicit components we have
two equations

U1∇1V
1 + U2∇2V

1 = 0

∂u

∂t

(
∂

∂u
V 1 − Γ1

11V
1 − Γ2

11V
2

)
+
∂φ

∂t

(
∂

∂φ
V 1 − Γ1

12V
1 − Γ2

12V
2

)
= 0

If t = φ then ∂u
∂t

= 0 and ∂φ
∂t

= 0 leaving

∂

∂φ
V 1 − Γ1

12V
1 − Γ2

12V
2 = 0

We know the symbols from part (b), and are further given the condition that
u = u0 where u0 is a positive constant thus

∂

∂φ
V 1 =

1

u0
V 2 = 0
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Second equation

U1∇1V
2 + U2∇2V

2 = 0

∂

∂φ
V 2 − Γ1

22V
1 − Γ2

22V
2 = 0

Using our known Γ values

∂

∂φ
V 2 = Γ1

22V
1

=
−u0

1 + u20
V 1

This gives the coupled set of differential equations[
x′

y′

]
=

[
0 1

u0−u0
1+u20

][
x
y

]
Where we have made the substitutions ∂V 1

∂φ
= x′, ∂V 2

∂φ
= y′ and V 1 = x,

V 2 = y. This system has the standard trigonometric solution

[
V 1

V 2

]
=

c1√ 1
u20+1

sin(
√

1
1+u20

φ)− c2
√

1
u20+1

cos(
√

1
1+u20

φ)

c1cos(
√

1
1+u20

φ) + c2sin(
√

1
1+u20

φ)


Imposing the initial conditions V 1 = 1 and V 2 = 0 we return[

V 1

V 2

]
=

[
c2
√

1
u20+1

c1

]
=

[
1
0

]
Thus

c2 =
√
u20 + 1

c1 = 0

Giving particular solutions
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[
V 1

V 2

]
=

 −cos(
√

1
1+u20

φ)√
u20 + 1sin(

√
−1

1+u20
φ)


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Appendix

Following is the MATLAB software used in the generation of the rotation
matrices for problem 2.
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syms T;

R = [ cos(T) , sin(T) ;
      -sin(T), cos(T) ];

EQN = [ 2 , 1 ;
        1 , 2 ];

f = R.' * EQN * R;

simplify(f)

 
ans =
 
[ 2 - sin(2*T),     cos(2*T)]
[     cos(2*T), sin(2*T) + 2]
 

Published with MATLAB® R2018b
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