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Question 1

Part a

The directional derivative gives the rate of change of a function f along a
curve C;. In three dimensional cartesian coordinates this is given by

df _dudf  dydf | dzdf
dt  dtdr dtdy dtdz

For curve C}

dx dy dz

0.2 =1.Z2=1
dt T dt T dt

df df df o o

iz a:z,dy yz,dZ Tty

So the directional derivative is

v = 2yz + 2% + ¢

Evaluated at the point p

vi(p) =1

For curve Cy



So the directional derivative is

v) = —2xzsinh(t) + 2yzcosh(t) + z* + 2tz* + 2ty* + 3
Using the definition of the first curve

Ci(t) = (z,y,2) = (1, 1,1)

We see the point p = (1,0,0) corresponds to a t value of 0. The directional
derivative of C5 evaluated at p is then

vi(p) =1

Part b

We wish to find the tangent vectors in the coordinate basis

(0s, 0y, 0-)

This is the rate of change of z, y and z along each point in the curve nor-
malized to unit length. This may be written

(8xc Y. 820)
ot’ ot ot
For curve coordinates (., Y., 2.). Using the results from part a for C; this
gives

ox. 0y. 0z
—,—,—) =1(0,1,1
(875’015’815) (0.1,1)
Normalizing to unit length we have
1
v=—=(0,1,1)

V2

To recover the original length of the vector find the length in cartesians



ox. 2+ Y. 2+ 0z, 2_ TT1-v2
ot ot ot ) B
And so the equivalent length vector in the derivative basis is

D = (vV2,v2,V2)

Interestingly, though the first element of this vector is v/2, because the deriva-
tive in this direction is zero, the total length is preserved

75 = V(D0 + (10,7 + (D10.)° = \/ (ﬁ%) ¥ (ﬁ%) V3

As the tangent vector to the curve Cy at the point p is the same as €} and
the curve derivatives (0,,0,,0,) are also equal, the resulting vector in the
derivative basis is equivalent to the C} case.

Question 2

Part a

Begin by writing our equation in matrix notation

=k i o] )

x| | cos® sind| |2
y|  |—sinf cosl| |y

Replacing x and y in our original equation by the rotated equivalent and
simplifying via MATLAB we achieve

o ) [P e ]

A rotation results from

22" — sin(2T)2"? + cos(2T)y'x’ + cos(2T)y'x" + y*sin(2T) + 2y
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Choosing T'= %

o0 — 2 4 y/2 4+ 9 y/2

:x/2+3y/2 — 1

As required

Part b
The components of the tangent vector (0,,d,) are
dz
st + cosqﬁ)
RN ( V3

;l—z = % (S’m¢ + %COS@/J)
Now for v(f) = v(xy)

dr d dy d
@@(xy)ﬂL@ (zy)

2 (o ) s (v )

1 _ 1 1 r
+E <sznw + ﬁcosz/o E <cosw + ﬁsmw)
_ g Y coswsin — ——sin?p — ——
=3 (szn¢cos¢ + BCoswsm@/} \/gsm (0 \/ECOS%)

1 1 1 1
+— | stnycosy + -cossiny + —=sin"Y +
R wfcosw)

4

= gsim/Jcosw

Now consider expanding

2 9 9

— x —

\/3( y7)



To get

% ((%cosw n %Smw)z _ (-%casw + %sz’m#) 2)

2 1 9 1 5 2
= —(=cos”Y + —s1n“Y + ——=s1nyPcos
5 (5e08™ + gsin®y + —sineosy

1 1 2
——cos*p — = sin*1h + ——sinipcosi))

2 6 V12

= % (\/%sinwcosw)

4
= gcoswsmw
We see the result is equivalent to that derived above and so v(zy) is indeed

7@ =)

Question 3

0.1 Part a

Looking at diagram (a) we see two similar triangles which give rise to the
relation

£

L)
P,
Using Cartesian coordinates
Sy =1—123,5; = a9
Py=2P, =y
So by similar triangles

]_—{Eg 2

X2 Y1



Figure 1: Diagram (a)

Y1
200 =
2 1— T3
. 22(32
h = 1= 2

By rotational symmetry about the z3 axis

. 21‘1
Y2 = 1=
Providing
( ) o 2$2 21’1
Y1,Y2) = 1—1'3 ]_—Ig
Part b

The answer is found in the same manner as part a except now xs3 moves
above the lower (z7,x2) plane and so we have the mapping



1—23— 1+ 23
Which yields

( ) 21‘2 2.731
21,29) = | ———
1, <2 1 + I‘3’ 1 I T3
Question 4
We wish to evaluate
A/ 1 )\/p/
L = §g (Ow G + Ourgprr — Op g

First evaluate the bracketed term

a,u/gl/p’ =+ al,/gp/#/ — ap’gu’u’

Ozt dx”' Oz ; (&vp foRtnd oxP 0*z" )
vp

~ 0zt OxV Oz OxP OxH Oxv'  Oxv OxH Oxr’

+%%% N oxt  O%xP N oxt  O%xP
ozxv' Oxr' OxH vGon T Jou ozH Oz 0xF  OxF' Oz OxH

OxP Ox* Oz ox¥ 0%zt ox¥ 0%t
927 9z oz P T I\ 5 pad 9 T Ok 0P Oz
Using the symmetry of ¢ and exchanging indices
Ozt Ox¥ OxP oxP 0%*xv

D a7 9 S0 Ot = Ootur) + 9005

+8x” o +8:L'p 0%z +8:Cp foRtnd _8:1;” 0%z _(9:1:” foRtind
oz Oxt Oxf  Oxt OxV' Oxr'  Oxf OxV' Oxt Oz OxP Ozt  Oxt Oxr OxV

Collecting like terms

dzt dx¥ OxP dxP  O*x¥
D Do Do’ 8o Ol = Onlu) ¥ 2000y 7 iy
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making the total expression for I'

1 02N 0z* Agy, Ot Ox” OxP dzP 9%z
5( ox> 0xf g )(ax“' oxV' Oxr’ (OuGep + OvGon = D) + 29, Ozt ax“'&v’/')

1 4,02 Ozt Ox¥ g sp 0T 0P
= 29 05 0% g o Ve ¥ O = o) + 90080 5 )

o™ Oz* Orv 1 orN 9%
= ————- bl P 0 v a,/ - 8 v / /
ox> Oxt Oxv' 29 (Oulvp + OuGon oGuw) + ox> Oxt Ozv )

Which is the transformation law obeyed by an affine connection as required.

Question 5

Part a

Perpendicularity is given by the condition

VW, =0

Contracting four velocity and acceleration yields
-1 1
Ue (—28agz§ — —2Uaab¢Ub)
c c

—1 1
= —U"0.0 — U U,0"¢U,,
c c
Since U*U, = —1

-1 1
= FUaaad) + C—28b¢Ub

=0

So the vectors are perpendicular.



Part b
Removing the right hand side term

v (o)
C

-1
— —QUaﬁagb
c
For this to be zero we require

-1
?Uaaaqb =0

U0y + U'dip = 0

10 vl

b=V

c 8t¢ c ¢
which is satisfied in a number of cases. One being a time invariant potential
a% = 0 in which the particle always moves along an equipotential trajectory
'V = 0.

Part c

We find a solution by considering the chain rule and using the provided
definitions in the assignment sheet

W _1dow) _ydo v dy
ds ¢ ds  cds c ds

dU’ _ ydtdv'  w'dtdy

ds  cdsdt | cdsdt

Because Cﬁ = 77 wWe have a _ 7
ds ds c

ds  dt ' A dt
We will nesgi the quantity ‘fl—;’ which is found by considering the zero compo-
nent of %

au’ — y*dv  viydy




av® _ dedv®
ds ds dt
aaj’ -1 ,

YU
2

—1
C rec

)

VGMTZZ%'
ric

—’}/2 GMUZ ”
= — r
C3 7,.2

Recalling that % = 1 we have

dy v GMrp'
dt 2 2

And so

aU'  y*dv' vy y GMi'
ds 2 dt 22 r?

The vector v* points in the direction of ri s0 may be written or giving

B v dvt At G Muv2ri

c dt ctr?

Equating dd—(f we need the quantity 0;¢

—-GM
Dp — 0 G :
Oz; (22 + 2% + 13)?

1, 1
= GM—r' = GMri
T r

Which gives

ds c? 72 c2r?

Ui —1 (GMfi . 72GMU272')
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So

c 72 c2r? c2 \ dt c2r?

-1 (G]\/h:" N VZGMUQTA2> B 7_2 (

72 r2 c2r2 c2

-1 (G’J\htz N VZGMU%:Z) G (dvi GMU%“AZ')

dvt GMuy2r
dt c2r?
dvt GMuy2r

dt c?r?

,-)/2 r2 c2r2

-1 (GMTA’ N nyGMv27:i> -

dvi  GMri  GMv*i  GMuv?ri
dt — ~2r2 r2c? r2c?

~ GMryi

As required

Question 6

Part a
Expanding the metric on the paraboloid

ds* = Adu® + Bdudg + Cdp?

And evaluating the coefficients
A oy 2 02\ >
4 ((a—u) () + ()
= cos’¢ + sin’¢ + u?
=1+’
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_owow g0y 0:0
C Oudp  Oudp  Oudd

= —cospsinou + singpcospu + 0

=0

o= (&) (2 (%))

= u?sin’¢ + u’cos*¢ + 0

Giving a metric

ds? = (1 +u?)du® + u*dp*

Part b
Christoffel Symbols are given by

1
L'y = §9ad (Gbd,c + Gedp + Geb,a)

We know the quantity g,, obeys the relation
ds® = dz"g,,dx”
From part (a) this gives us
dat g, de’ = (1 + u?)du® + udg®

Meaning g,,, is

1+u? 0
Guv = 0 2

u
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The action of two g matrices on a quantity result in the original quantity and
thus the value of the contravariant ¢ must be such that, when multiplied by
the covariant g, recovers the identity. This is satisfied by

1
y — 0
gﬂ — |: 1—&(—)u2 L:|

We find our Christoffel symbols to be

1 0 0 0
Fh = —911 (—911 + %911 — %911)

2 ou

1 1 U
= - 2 =

S EREi

1 1 ,,/(0 0 0
Iy = 59 8¢911 + —921 8ug21

1 (0+04+0)=0
214 u? N

1 0 0 0
F51 = 5911 (@gm + a—¢911 — %912)

11
_§1+u2(0+0+0)_0

1 0 0 0
L o— 2,1
22 29 (8¢921 + ¢921 8ug22)
1 1 —U
i ——— —2 —
ST M T

1 0 0 0
F%l = 5922 <%912 + %912 — a—¢911)

11

1 0 0 0
F%z = 5922 (a—(bglz + %922 — %921>
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L 0 out0)= 2
S U — _
2 u? U

1 0 0 0
Pgl = 5922 (%922 + a—¢912 — %912>

11 1
:——2 = —
2u2(u+0+0) ”

1 0 0 0
F§2 = 5922 (8_¢g22 + 8_¢922 — 8_¢922)

11

Giving the non-zero symbols to be

1 U 1 —u 2_F2_1
11 12 =121 =
u

r
1+u27 22 1+u27

Part c

Writing the condition for parallel transport in explicit components we have
two equations

UV + UYLV =0

ou [ 0 ¢ (0
ot (%vl - I’th - F%1V2> + ot (8_¢V1 - F%QVI - F%QVQ) =0

If t = ¢ then % =0 and % = 0 leaving

0

8_¢V1 ~TLVI -T2,V? =0

We know the symbols from part (b), and are further given the condition that
u = ug where ug is a positive constant thus

0 1
—V'=—V’=
8925 Uo 0
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Second equation

UWV2+UV,V2E=0

0
8—¢v2 —TLVI—T2Vi=0
Using our known I values
0
8_¢V2 =T, V!
1+ ud

This gives the coupled set of differential equations

A-1= 90

vl 9V
o 9
V? = y. This system has the standard trigonometric solution

|:V11 . Cl\/ugl-i-lsfin(\/l-i-lug ¢) —C @COS( \/ ﬁ(b)

2 :
4 crcos( ﬁ@—l—czsm( ﬁ@

Where we have made the substitutions y and V! = z,

Imposing the initial conditions V! =1 and V2 = 0 we return
1
v =] = ]
V el 0
o =\Jud+1

01:()

Thus

Giving particular solutions
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Appendix

Following is the MATLAB software used in the generation of the rotation
matrices for problem 2.
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synms T;

R=1] cos(T) , sin(T) ;
-sin(T), cos(T) ];

EN=[ 2, 1,
1, 217;

f=R" * EN* R

simplify(f)

ans =

[ 2 - sin(2*T), cos(2*T)]
[ cos(2*T), sin(2*T) + 2]

Published with MATLAB® R2018b




