
A Model For Experimentally Obtained Laser Data

Joseph Lyle Pritchard

University of Adelaide, Adelaide, Australia

Introduction

Understanding of laser behaviour has countless uses in a diverse array of areas and hence

being able to model laser behaviour mathematically serves most useful. Investigation

following aims to model experimentally obtained laser data using a system of 4 coupled

differential equations.

Procedure

Note that for all produced results the MATLAB code used in the result creation can be

viewed at the end of this report.

1. Project data is downloaded and saved in the working directory.

2. See Figure I and MATLAB Script attached.

3. In plotting N2 against time adopting N2 to be plotted on a log scale we note close

linear correlation following the time marking of 200 units. Before this value we note

a curved relation, perhaps fitted by an exponential. As such it is reasonable to

assume low values are fitted by a steep decay while higher time values are fitted by

a base 10 logarithmic function. These results can be viewed in Figure II.

4. A model will be constructed which follows the Physics specified.

5. We know that the transfer of ions from band 4 into band 3 is much larger than the

transfer from band 4 to anywhere else. As such it is reasonable to assume that once

an ion enters band 4 it is immediately transferred into band 3. This is modelled by

treating bands 3 and 4 as a single band and further removing all terms corresponding

to the transfer of ions from band 4 elsewhere.

6. Using the initial conditions specified in the outline the constructed model is solved

using MATLAB functionality to produce the populations of bands N1, N2 and N3 over

time as can be seen in Figure III. Note for ease of visibility the population of N2 is

scaled up by a factor of 20 in this figure.

7. Previously used function is embedded within a parent function capable of accepting

two parameters N20 and Cup and a time vector returning the values of the N2

population for each of the time values given in the time vector. To ensure optima

functionality the function is tested for varying values of the two parameters as well

as the input time vector. The produced graph is shown in Figure IV.

8. The mathematical model produced is now used to create a fit curve to the

experimental data and test the models accuracy. As can be seen from the produced

graph in figure V , the fit is closely matched to the experimental data suggesting the

behaviour is accurately described by the physics sprouting the model.

Graphs of experimental and theoretical data

MATLAB Code for Question 2

%Question 2

clear all;

%Import data

load('data.mat');

Time = Data.Time;

N2 = Data.N2;

%Define curve to be fitted to data

%A = Yaxis intercept, B = Decay rate, C = Asymptote

ExpFit = fittype('A*exp(-B*x) + C','coeff',{'A', 'B', 'C'});

%Define fit variables

FitVariables = [7e7, 9, 0];

%Fit to data and plot

[efit, gofexp] = fit(Time, N2, ExpFit, 'StartPoint', FitVariables, 'Lower', 0,

'Upper', 9e7);

plot(efit, Time, N2)

title('Figure I : Exponential Fit to Experimental Data')

xlabel('Time (s)')

ylabel('Population of Ions')

MATLAB Code for Question 3

%Question 3

clear all;

load('data.mat');

Time = Data.Time;

N2 = Data.N2;

%Define curve to be fit to data

%A = Yaxis intercept, B = Decay rate, C = Asymptote

ExpFit = fittype('A*exp(-B*x) + C','coeff',{'A', 'B', 'C'});

%Define fit variables

FitVariables = [7e7, 9, 0];

%Fit to data

[efit, gofexp] = fit(Time, N2, ExpFit, 'StartPoint', FitVariables, 'Lower', 0,

'Upper', 9e7);

%Attempt plotting on a Log scale

semilogy(Time,N2)

title('Figure II : Experimental Data on a Log Scale')

xlabel('Time (s)')

ylabel('Logarithm of Population')

MATLAB Code for Question 6

%Question 6

clear all

close all

%%% Plot System of ODEs given in System_Des_6

%runtime

TFinal = 1e-2; %Seconds

%Total Ion poulation

NConc = 1.4e8; %Ions

%ICs

N0(1) = 0.8 * NConc;

N0(2) = 0.2 * NConc;

N0(3) = 0.0;

N0 = transpose(N0);

%Specify runtime

TSpan = transpose([0, TFinal]);

%Use ode45 to solve system with initial

%conditions N0 and time span TSpan

[TOUT,YOUT] = ode45(@System_DEs_Q6, TSpan, N0)

%Scale N3 to make behaviour visible

YOUT(:,3) = 20 * YOUT(:,3);

%Plot solution curves to ODE system

figure;

hold on

LineN1 = plot(TOUT, YOUT(:,1));

Label1 = "N1";

LineN2 = plot(TOUT, YOUT(:,2));

Label2 = "N2";

LineN3 = plot(TOUT, YOUT(:,3));

Label3 = "N3";

legend([LineN1; LineN2; LineN3], [Label1; Label2; Label3]);

title("Figure III: N1, N2 and N3 Population Over Time");

xlabel("Time (s)");

ylabel("Ion Population");

hold off

External Function for Question 6

function Result = System_DEs(t, Y)

%Y a vector of initial conditions

%t a scalar starting time

 w21 = 117;

 w31 = 105;

 w32 = 22;

 w41 = 0;

 w42 = 0;

 w43 = 0;

 C_Up = 8e-6;

 R(1) = w21*Y(2) + (w31 + w41)*Y(3) + C_Up*(Y(2))^2;

 R(2) = -w21*Y(2) + w32*Y(3) + w42*Y(3) - 2*C_Up*(Y(2))^2;

 R(3) = w43*Y(3) - (w32 + w31)*Y(3) + C_Up*(Y(2))^2 - (w43 + w42 + w41)*Y(3);

 Result = transpose(R);

end

MATLAB Code for Question 7

clear all

close all

%%% Plot Population of N2 over time %%%

%runtime

TFinal = 1e-3; %Seconds

%Total Ion poulation

NConc = 1.4e8; %Ions

%Define parameter variables

N2_0 = 0.8;

C_UP = 8e-6;

T = linspace(0, TFinal, 100);

%Find number of ions in N2 over time

N2 = Find_N2(T, N2_0, C_UP);

%Plot solution curves to ODE system

plot(T, N2);

title("Figure IV : Population of ions in band N2 over time");

xlabel("Time (s)");

ylabel("Number of Ions");

External Functions for Question 7

function N2 = Find_N2(T, N2_0, C_Up)

 %runtime

 TFinal = 1; %Seconds

 %Total Ion population

 NConc = 1.4e8; %Ions

 %Create handle which passes C_Up as a constant

 Current_EQn = @(T, N2_0) System_DEs_Q7(T, N2_0, C_Up)

 %ICs

 N0(1) = (1 - N2_0) * NConc;

 N0(2) = N2_0 * NConc;

 N0(3) = 0.0;

 N0 = transpose(N0);

 %Specify runtime

 TSpan = transpose([0, TFinal]);

 %Output N2 for specified t values given by T

 N_All = transpose(deval(ode45(Current_EQn, TSpan, N0), T));

 N2 = N_All(:,2);

end

function Result = System_DEs(t, Y, C_Up)

%Y a vector of initial conditions

%t a scalar starting time

 w21 = 117;

 w31 = 105;

 w32 = 22;

 w41 = 0;

 w42 = 0;

 w43 = 0;

 %Equations

 R(1) = w21*Y(2) + (w31 + w41)*Y(3) + C_Up*(Y(2))^2;

 R(2) = -w21*Y(2) + w32*Y(3) + w42*Y(3) - 2*C_Up*(Y(2))^2;

 R(3) = w43*Y(3) - (w32 + w31)*Y(3) + C_Up*(Y(2))^2 - (w43 + w42 + w41)*Y(3);

 Result = transpose(R);

end

MATLAB Code for Question 8

clear all;

load('data.mat');

Time = Data.Time;

N2 = Data.N2;

%Define curve to be fit to data

Fit = fittype(@(N2_0, C_Up, x) Find_N2(x,N2_0, C_Up));

%Fit to data

[efit, gofexp] = fit(Time, N2, Fit,'Lower',[0,8e-7],'Upper',[10e8,8e-

5],'StartPoint',[10e3 8e-6]);

plot(efit, Time, N2)

title('Figure V : Theoretical Fit to Experimental Data')

xlabel('Time (s)')

ylabel('Population of Ions')

