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Introduction 

Pendulums have been a source for the local determination of gravity for many years and can be used 

in a variety of ways to determine a value for the local gravitational strength. Simple pendulums are a 

useful tool in measuring gravity however due to the difficulty in constructing a true simple pendulum 

there are limits imposed on the accuracy of this method. An alternative is to use Kater’s Pendulum 

which consists of two masses of different weight on either end of a pendulum shaft. Starting from 

the equation for the swing period of a simple pendulum it can be shown Kater’s pendulum obeys by 

the equation: 4𝜋2𝑔 = 𝑇12 + 𝑇222(ℎ1 + ℎ2) + 𝑇12 − 𝑇222(ℎ1 − ℎ2) 
Where T1 and T2 are the pendulum swing periods from either end, h1 and h2 are the distances from 

either end to the centre of mass and g is the local gravity strength. A reference featuring the 

derivation of this equation can be found in the reference section (Field & Hazlett 2001).  All values 

can be measured with considerable accuracy bar for (h1-h2). This uncertainty can however be 

minimised by ensuring T1 and T2 are approximately equal, making the second fraction small 

compared with the first. A consequence of this accuracy is an ability to calculate gravity with greater 

accuracy than would be attained via the use of a simple pendulum.  It is this fact that motivates this 

experiment and will be used to attain an accurate value of gravity. 

Optimisation of Apparatus 

Optimum apparatus setup was crucial in ensuring the gathered results were as accurate as possible. 

The pendulum arm utilised in the experiment featured two unequal masses (labelled m1 and m2) of 

equal external dimensions fixed to opposite ends of a steel bar. Either end of the pendulum featured 

knife edges, allowing for accurate suspension. An additional, adjustable mass was present between 

the two end masses to allow adjustment of the systems centre of mass. A light gate was connected 

to a computer such that the timing of repeated light beam obstructions by the swinging pendulum 

could be recorded over a given time interval. The pendulum arm was then suspended such that 

when the pendulum was hanging freely one pendulum end was centred in the light gate, ensuring 

the light gate and pendulum were correctly aligned. A diagrammatic representation of this setup can 

be seen in figure 1. 
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Optimising amplitude of oscillations 

An optimum amplitude for the experiment was one which obeyed the required relation that period 

be independent of amplitude, as can be observed from Kater’s equation (1) where period is defined 

in terms of h1 , h1 , g and other constants all of which are independent of amplitude. Amplitude was 

then chosen such that experimental uncertainty was minimised. 

The pendulum was set to swing from varying starting amplitudes to determine upper and lower 

bounds for which it was appropriate to assume period and amplitude independence. For 500 

pendulum swings the period and amplitude were recorded to confirm the relationship between the 

two and provide a region for which the assumption was accurate. This process was completed for 

higher amplitudes (12cm) and lower amplitudes (3cm) to establish the relationship. 

The most appropriate starting amplitude was then determined exactly by setting the pendulum in 

motion for amplitudes within the measured bounds calculated prior. Ten cycles were recorded per 

amplitude and plotted against period using software which also displayed the standard error present 

in each set of period measurements. The region for which amplitude was very nearly independent of 

period was then found. Period uncertainty was used as a guide to then choose the most optimum 

amplitude within this region.  

Optimum weight position 

Mass one (m1) was used to support the pendulum such that mass two (m2) hung freely. The central 

adjustable mass was positioned such that it aligned with the lowest horizontal position marker along 

the pendulums shaft. This marking was labelled as position 1 with the second lowest marking 

labelled as position 2 and so on up to position 11. Swing period of one pendulum cycle was then 

recorded for each weight position and stored in the system software. This process was repeated 

with mass 2 resting on the supports, taking care that pendulum markings were labelled to be 

consistent with those previous (the lowest marking was now labelled position 11 and so on). These 

results were then plotted on a graph to determine the relationship. The weight position for which 

the swing periods were most closely matched was the optimum adjustable weight positioning to 

minimise the experimental dependence on the value (h1-h2), which has a large uncertainty. The 

reason for this is clarified in the determination of experimental values. 

Figure 1: Kater’s Pendulum Setup 
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Results for optimum apparatus set-up 

From the initial measurements taken it was observed amplitudes of 5cm and below meet the 

requirement that period of oscillation be independent of amplitude. Through further analysis it was 

found that the optimum starting amplitude lied within the bounds of 4 and 6cm (Graph 1). After 

many oscillations in the initial trial, when the amplitude dropped below 3cm, the recording software 

automatically amplified the display for the period. This made the displayed results hard to interpret 

and so amplitudes below this level were not suitable (Results showing this feature can be viewed in 

appendix section A). In making precise measurements of period and amplitude dependence it was 

seen that below the 4cm level amplitude begins to rapidly decay (Graph 1). The cause was believed 

to be friction between the knife edges and supports, which provided a lower bound for the optimum 

amplitude to fit with the requirements. 

For higher amplitudes of 5cm up to 12cm there was an observed relation between amplitude and 

period, seen by a steady rise in the graph (Graph 1). This result provided an upper bound of 6cm on 

the amplitude options as above this amplitude-period dependence was increased. Further results 

supporting this conclusion are included in appendix section B. 

Within the necessary bounds of 4-6cm the starting amplitude of 4cm was selected as best since it 

had a low uncertainty, represented by narrow error bars, and lied most securely in the region of 

amplitude-period independence. 

Suitably choosing a weight position to minimise the value of T1
2
 – T2

2
 resulted in position 6 being 

chosen which was approximately half way along the pendulum shaft. This was seen as the point 

where the graphs of period one and period two against position intersect (Graph 2). 

Graph 1: Starting Amplitudes against Pendulum Period Trial 2 
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Discussion of results for apparatus set-up 

Based on empirical evidence it was concluded a starting amplitude of 4cm and adjustable weight 

positioning of 6 most suitably minimised the uncertainty in measurement and matched with the 

requirements of the experiment.  

Below the 4cm amplitude mark a strong relationship began  to take hold causing dramatic decreases 

in period. It was believed this effect was due to friction within the system, potentially between the 

supporting knife edges and the pendulum’s support. Low amplitudes were also met with an 

automated scaling in software display which led to hard-to-interpret results. This is an issue in the 

software and by choosing higher starting amplitudes this potential error was avoided. 

Above this amplitude the data also began to climb at an increasing rate as period and amplitude 

became dependent on one another. This made higher starting amplitudes less suitable for the needs 

of this experiment. 

In an effort to minimise the uncertainty of the final value of g, the (h1-h2) dependence was 

minimised by setting T1 approximately equal to T2. From the various adjustable weight positions 

trialled this occurred for position marking 6. Taking this precaution greatly increased the accuracy of 

the final result by limiting the effect of the hard to measure (h1-h2) on the final accuracy. It was 

noted that more closely matching periods could be achieved if half integer position markings were 

used however considering the almost exact cross-over seen in the results an improvement in this 

regard was likely to be outweighed by uncertainties in other variables. 

 

Determination of Experimental Values and Gravity Strength 

Calculation of pendulum midpoint 

Through the use of torque arguments it can be shown that: ℎ2ℎ1 = 𝑠1𝑠2 

Where h1 and h2 are the distances to the centre of mass from mass 1 and mass 2 respectively and S1 

and S2 correspond to the scale readings of mass 1 and mass 2 when placed on weighing scales (A 

Graph 2: Periods 1 and 2 against Adjustable Weight Position 
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derivation of this fact is included in appendix section C). Values for h1 and h2 were then calculated 

via the use of a travelling microscope. The pendulum was positioned on the travelling microscope 

and the microscope crosshairs were focused to minimise the presence of parallax error. Values for 

the positions of the knife edges on either end of the pendulum were then recorded. To ensure 

readings were accurately taken the measurements were recorded with both eyes open to reduce 

eye strain. The difference of the two readings then provided the length between the knife edges and 

the value for (h1 + h2).  

Now having the value of (h1 + h2) and the ratio of h1 to h2 it was possible to determine their 

individual values by direct substitution and thus the distance (h1 - h2).  

Determination of swing period 

Periods T1 and T2 were determined by first orienting the pendulum such that it was supported by 

mass two. Period values were then recorded for 10 sets of 10 oscillations and plotted to allow for 

the determination of period 1 (T1). Repeating the process with mass one at the support allowed for 

period values of period 2 (T2) to be calculated and plotted. The results were then analysed to reach a 

value for the periods and their respective mean standard errors. 

Results for experimental values of midpoint and swing period 

Placing the masses on the scales and taking the scale readings to find the ratio of h1/h2 discerned: ℎ2ℎ1 = 𝑠1𝑠2 = 1614.5𝑔618.3𝑔 = 2.6110 ± 5 × 10−4 

 

With scale reading uncertainty of ±0.1g being the smallest reading presented by the scales. 

Derivation of the ratio uncertainty is included in appendix section D. 

When placed upon the travelling microscope the distance position of knife-edge 1 was measured to 

be: 𝐾1 =  90.8950 𝑐𝑚 ±  0.05 𝑚𝑚 

For knife edge 2 the distance was measured as: 𝐾2 =  10.0635 𝑐𝑚 ±  0.05 𝑚𝑚 

Where the uncertainty was taken as half the smallest travelling microscope increment. The value for 

(h1 + h2) was then given by the difference: (ℎ1 +  ℎ2)  =  𝐾1 –  𝐾2 =  80.8315𝑐𝑚 ± 0.007𝑐𝑚 

Calculating the difference of h1 and h2 was done by utilising the ratio relationship and their sum. A 

full derivation of the result and uncertainty can be found in appendix sections E and D respectively. 

The value for (h1 - h2) was found to be: ℎ1 − ℎ2 = −36.0619𝑐𝑚 ± 0.02𝑐𝑚 
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In using system software to record the values of swing periods T1 and T2 for ten sets of ten cycles 

each the mean period along with its standard error was calculated using the software. The resulting 

graphs are shown below (Graphs 3 and 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Software analysis on these measurements resulted in mean values for T1 and T2 as follows: 𝑇1  =  1.80075 ±  4 × 10−5𝑠 𝑇2  =  1.80044 ±  2 × 10−5𝑠 

Where uncertainty was given by the standard error of the mean provided in software analysis. 

By substituting the measured values into Kater’s equation (1) a value for gravity was determined. 

The derivation of the uncertainty is included in appendix section D. The value for gravity is then: 

     𝑔 =  9.787 ± 0.002𝑚𝑠−2 

Graph 3: Ten Sets of Ten Swings for T1 

Graph 3: Ten Sets of Ten Swings for T2 
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Discussion of results for experimental values of midpoint, swing period and gravity 

In calculating values dependant on the lengths h1 and h2 it was noted that varying levels of accuracy 

were present. For the sum (h1 + h2) the uncertainty was 7 x 10
-3

cm whereas the difference (h1 – h2) 

had uncertainty 2 x 10
-2

cm. As periods T1 and T2 had been set to be approximately equal it was 

expected the increased uncertainty in the difference, while large, would not have a significant 

impact on the accuracy of the final value for g.  

The swing periods T1 and T2 were recorded to have an uncertainty of ± 4 x 10
-5 

and ± 2 x 10
-5

 

respectively. Due to the higher level of accuracy compared to the other measurements it was 

unlikely the values for period would provide a significant contribution to the overall error in g. 

A decay in the swing period was noticeable over time however as this decay occurred in the 5
th

 and 

6
th

 decimal place it neglected to provide a significant uncertainty leading to accurate results. A 

possible cause for this was friction present between the knife edges and the supporting apparatus, 

which was believed to have also caused a rapid decay in period for small starting amplitudes when 

optimising the apparatus. 

The value for g was measured to within 4 decimal places of accuracy which in consultation with 

literature (Hill 2018) matches the limits of accuracy expected in the use of Kater’s pendulum and so 

this result is expected. 

Comparing the calculated value of g to the literature value of: 𝑔 =  9.7972 𝑚𝑠−2 

It was noted the result achieved was only accurate to the 2
nd

 decimal place, with rounding. A liable 

cause for this was the friction believed to have been present between the knife edges and the 

pendulum supports, which caused a decline in period for small swing amplitudes. In avoiding small 

starting amplitudes the effect of this was minimised however its presence may have been the cause 

for the reduced precision of the result. In future experiments care should be taken to ensure no such 

friction is present.  

 

Conclusion 

The value for g calculated was: 𝑔 =  9.7873 ±  0.002𝑚𝑠−2 

This value fails to capture the cited literature value within experimental error, despite being accurate 

to within 2 decimal places. This is likely due to erroneous measurements caused by friction and 

other systematic errors. 
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Appendices 

Section A – Initial trial for Period and Amplitude Independence 

Blue line represents period of oscillations and red line represents amplitude of oscillations. 
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Section B – Relation between Amplitude and Period with Errors 

Section C – Derivation of Scale Reading and Rod Length Relation 

Using torque arguments, clockwise torques must equal anticlockwise torques: ∑𝜏𝐶 =∑𝜏𝐴𝐶  𝐹1ℎ1 = 𝐹2ℎ2 𝐹1𝐹2 = ℎ2ℎ1 

F1 and F2 given by scale readings s1 and s2 so: 𝑠1𝑠2 = ℎ2ℎ1 

Section D – Error derivation 

Uncertainty in gravity is given by: 

𝜎𝑔2 = 𝜎𝑇12 (𝜕𝑔𝜕𝑇1)2 + 𝜎𝑇22 ( 𝜕𝑔𝜕𝑇2)2 + 𝜎ℎ12 ( 𝜕𝑔𝜕ℎ1)2 + 𝜎ℎ22 ( 𝜕𝑔𝜕ℎ2)2 

Calculating uncertainties in each variable, using uncertainties attained upon measurement: 𝜎𝑇12 = 1.6 × 10−9𝑠 𝜎𝑇22 = 4 × 10−10𝑠 
𝜎ℎ2ℎ12 = 𝜎𝑠22(𝜕(

ℎ2ℎ1)𝜕𝑠2 )
2 + 𝜎𝑠12(𝜕(ℎ2ℎ1)𝜕𝑠1 )

2 = 𝜎𝑠22 (−( 𝑠1𝑠22))2 + 𝜎𝑠12 ( 1𝑠2)2 
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𝜎ℎ2ℎ12 = (10−4)2 (−( 1.61450.61832))2 + (10−4)2 ( 10.6183)2 = 2.79413 × 10−7 

𝜎ℎ1+ℎ22 = 𝜎𝑘12 + 𝜎𝑘22 = 2 ∙ (5 × 10−5)2 = 5 × 10−9𝑚2 
𝜎ℎ12 = 𝜎ℎ1+ℎ22 ( 𝜕ℎ1𝜕(ℎ1 + ℎ2))2 + 𝜎ℎ2ℎ12( 𝜕ℎ1𝜕(ℎ2ℎ1))

2
 

In appendix section E it is shown: 

ℎ1 = ℎ1 + ℎ2ℎ2ℎ1 + 1  

Using this fact to calculate derivatives and inserting known values gives: 

𝜎ℎ12 = (5 × 10−9)( 11 + ℎ2ℎ1)
2 + (3 × 10−7)( 

 −( ℎ1 + ℎ2(1 + ℎ2ℎ1)2) ) 
 2

 

Inserting values for h1 and h2 and calculating leads to: 𝜎ℎ12 = (5 × 10−9)(0.27693)2 + (3 × 10−7)(0.22385)2 = 2 × 10−8𝑚2 

Repeating the same process for the uncertainty in h2 leads to: 

𝜎ℎ22 = 𝜎ℎ12 (𝜕ℎ2𝜕ℎ1)2 + 𝜎ℎ1+ℎ22 ( 𝜕ℎ2𝜕(ℎ1 + ℎ2))2 = 𝜎ℎ12(−1)2 + 𝜎ℎ1+ℎ22(1)2 

𝜎ℎ22 = (2 × 10−8) + (5 × 10−9) = 2 × 10−8 + 3 × 10−8 = 5 × 10−8𝑚2 

Uncertainty in the difference (h1-h2) is then: 𝜎ℎ1−ℎ22 = 𝜎ℎ12 + 𝜎ℎ22 = 3 × 10−8𝑚2 

Calculating partial derivatives: 

𝐿𝑒𝑡 𝜔 = ( 𝑇12 + 𝑇222(ℎ1 + ℎ2) + 𝑇12 − 𝑇222(ℎ1 − ℎ2))−1 = 0.2494 𝑚𝑠−2 

𝜕𝑔𝜕𝑇1 = −4𝜋2𝜔2 ( 𝑇1(ℎ1 + ℎ2) + 𝑇1(ℎ1 − ℎ2)) = 6.7920 

𝜕𝑔𝜕𝑇2 = −4𝜋2𝜔2 ( 𝑇2(ℎ1 + ℎ2) − 𝑇2(ℎ1 − ℎ2)) = −17.7309 

𝜕𝑔𝜕ℎ1 = −4𝜋2𝜔2(−2( 𝑇12 + 𝑇22(2(ℎ1 + ℎ2))2) − 2( 𝑇12 − 𝑇22(2(ℎ1 − ℎ2))2)) = 12.1966 
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𝜕𝑔𝜕ℎ2 = −4𝜋2𝜔2(−2( 𝑇12 + 𝑇22(2(ℎ1 + ℎ2))2) + 2( 𝑇12 − 𝑇22(2(ℎ1 − ℎ2))2)) = 12.1755 

Inserting all values into the equation for the uncertainty in g gives:  𝜎𝑔2 = (1.6 × 10−9)(6.7920)2 + (4 × 10−10)(−17.7309)2 + (2 × 10−8)(12.1966)2 + (3 × 10−8)(12.1755)2 𝜎𝑔2 = 8 × 10−6𝑚2𝑠−4 
And so uncertainty in gravity is: 𝜎𝑔 = 3 × 10−3𝑚𝑠−2 

Section E – Derivation of h1 , h2  and the difference (h1 – h2) 

Utilising the ratio relationship between the heights found via the scales: ℎ2ℎ1 = 2.611   →     ℎ2 = 2.611ℎ1 

Then: ℎ1 + ℎ2 = ℎ1 + 2.6110ℎ1 = 80.832𝑐𝑚 ± 0.007𝑐𝑚 

ℎ1 = 80.8315𝑐𝑚2.6110 + 1 = 22.3848𝑐𝑚 ± 0.01𝑐𝑚 

Substitution leads to a value for h2: ℎ2 + ℎ1 = 80.8315𝑐𝑚 →   ℎ2 = 80.8315𝑐𝑚 − 22.3848𝑐𝑚 = 58.4467𝑐𝑚 ± 0.02𝑐𝑚 

And so a value for the difference (h1 – h2) is then: ℎ1 − ℎ2 = 22.3848𝑐𝑚 − 58.4467𝑐𝑚 = −36.0619𝑐𝑚 ± 0.02𝑐𝑚 

Calculations of uncertainties are included in appendix section D. 

 


